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Abstract:

As the world population ages, primary preventiomg@é-related cognitive decline and disability
will become increasingly important. Prevention t&gées are often developed from an
understanding of disease pathobiology, but moddisotogical success may provide additional
useful insights. Here, we studied 224 older adstisye with superior memory performance
(n=41), some with normal memory performance (n=188) some with mild cognitive
impairment (MCI) or Alzheimer’s disease (AD) (h=%8)understand metabolomic differences
which might inform future interventions to promaiegnitive health. Plasma metabolomics
revealed significant differential abundance of 1&abolites in those with superior memory
relative to controls (ROC AUC = 0.89) and the irse2zabundance pattern in the MCI, AD (AUC
=1.0) and even preclinical AD groups relative ¢atrols (AUC = 0.97). The 12 metabolites are
components of key metabolic pathways regulatingatke stress, inflammation, and nitric
oxide bioavailability. These findings from oppostteds of the cognitive continuum highlight the
role of these pathways in superior memory abilitied whose failure may contribute to age-

related memory impairment. These pathways mayrgeted to promote successful cognitive

aging.
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1. Introduction

Aging is characterized by the accumulation of &fgeriences that present opportunities and
challenges for continued growth and developmeninggesearch has historically focused on
what happens when we fail to negotiate these aiggle and relatively less attention has been
paid to understanding characteristics of succesgfulg. While there is no generally accepted
definition of successful aging, most include soroecept of freedom from physical and

cognitive disability (Depp and Jeste, 2006) whiplirize functional capacity and quality of

life. Maintaining cognitive abilities in the facd age-related physiological changes represents a
significant challenge especially given the diversit individual life experience and complexity

of brain organization which interact to produceiwdblal cognitive trajectories (Albert, 1997).
From the fourth decade of life onward, the most c@mm cognitive trajectory is characterized by
subtle decline in many abilities, most frequentigge requiring rapid transfer of information
across widespread brain networks (Salthouse, 2008}his is not invariant and relative stability
and improvement in complex cognitive abilities sashmemory is occasionally encountered into
old age (Rowe and Kahn, 1987, Gefen et al., 200l4gse alternate paths may be supported by
resistance to age-related accumulation of patheso@@alasubramanian et al., 2012) or cognitive
reserve (Stern, 2012) or enhanced neuroplastiGitydhess, 2014).

The search for lower cost, minimally invasive, highoughput biosignatures of cognitive
dysfunction has driven technological advances itabwomic platforms (Li et al., 2010,
Quinones and Kaddurah-Daouk, 2009). For examplgheral blood metabolomic analyses
allow qualitative and quantitative assessmentm@utating small molecules representing central
metabolic pathways (Voyle et al., 2016). Togethi#h\genomics, transcriptomics, and

proteomics, metabolomics is helping expand ouriléetappreciation of systems biology. The



biofluid matrix (e.g., plasma or serum) being inbgated via metabolomics, along with the
molecular separation methods used (e.g., gas vigsics chromatography) coupled with mass
spectrometry for molecular identification, detergsrihe specific yield of molecular species that
can be used as a phenotypic readout. These datdeirect and/or indirect evidence for
altered biochemical pathways linked to pathobiol{®sn et al., 2016) and brain structural
(Ciavardelli et al., 2016) and functional (Cans2®16) integrity . The scope and depth of such
molecular perturbations defined through metabolsmiay ultimately empower individualized
molecular phenotyping and our understanding ofadisespecific mechanisms. Herein, we report
an analysis of the plasma metabolome of older adith superior memory. Through this
investigation we sought new information about tlechemical processes that support successful
cognitive aging trajectories and may provide int8ghto age-related cognitive disorders, such

as Alzheimer’s disease (AD), where memory impaimiethe cardinal feature.

2. Methods
2.1 Participants

All participants in this study were recruited frahe communities of Rochester, NY or
Irvine, CA as part of the Rochester/Orange Courging Study (R/OCAS). Inclusion criteria
included age over 70 years, good overall physiealth, visual acuity and hearing sufficient for
cognitive testing, and proficiency with the Engllahguage. Exclusion criteria included major
neurological or psychiatric illness including a knodiagnosis of any phenotype of Mild
Cognitive Impairment (MCI) or AD, current or recdrtl month) use of anticonvulsants,
neuroleptics, highly active anti-retroviral thergfdAART), antiemetics, and antipsychotics for

any reason, and serious blood disorder includimgréb abnormalities in complete blood count



and anemia requiring therapy and/or transfusioh RAOCAS patrticipants gave written
informed consent and all procedures in this studsevapproved by Research Studies Review
Boards at the University of Rochester, UniversitZalifornia Irvine, and Georgetown

University.

2.2 Cognitive assessment and classification

As part of the R/OCAS, all study participants unaamt yearly cognitive testing and
provided a yearly blood sample. Cognitive testirgg\werformed at each yearly visit following
the blood draw and breakfast. The cognitive batternsisted of commonly used measures
administered in the standardized manner (Mapstbak,2014) Supplemental Table ). The
verbal episodic memory measure was the Rey Auditenpal Learning Test (RAVLT) (Rey,
1964). We classified the subjects in this studypgisiomposite Z-scores based on the group
characteristics adjusted for age, education, sekyesit. Adjustment for visit allowed us to
account for putative practice effects over the mydar study. The five composite cognitive
domain Z-scores included: attention{Z executive (4x9); language (4.); memory (Zen); and
visuospatial (%s)(Mapstone et al., 2014p50pplemental Table 2. To reduce the effect of
cognitively impaired participants on the mean abqd &je-, education-, sex-, and visit-adjusted
residuals from each domain Z-score model were tobstandardized to have median 0 and
robust SD=1, where the robust SD=IQR/1.35, as ik.8% IQR (Inter-Quartile Range) of a
standard normal distribution.

A total of 525 participants were enrolled in th©ORJ/AS and 497 participants had
complete blood and cognitive data. From this groig97, we identified 41 participants (8% of
the total sample) showing superior memory abilitissg the above criteria. Superior memory

for the supernormal (SN) group was defined as.2 1.35 SD and corresponds to th&'@ile.



To further isolate successful cognitive aging i@ 8N group, all other domain composite Z-
scores were required to be > -1.35 SD or greatar the 18%ile. After defining the SN
participants we used frequency matching to sefeatpseudo random manner an age-,
education-, and sex-matched normal control grougilgarticipants (NG for the SN group. In
order to enhance the specificity of our analysksia@mal control participants in this study were
conservatively defined with,Zm+1 SD (18' %ile — 8%"%ile) of the cohort median rather than
simply non-impaired or_> -1.35, and all other D1&s > -1.35 SDJupplemental Figure ).

The same cognitive assessment and Z-score metheydsaused to define the 74 amnestic
MCI (aMCl), AD and preclinical AD (Convertgeap), and their 73 matched control participants
(NC,) detailed in our previous work(Mapstone et al140 We chose to include the amnestic
phenotype of MCI rather than include other behaliphenotypes in order to conservatively
restrict our analysis to a group of MCI with thgHest likelihood of common underlying
pathobiology. Thus, our combined aMCI/AD group asibly represents a relatively
homogenous group of individuals with nascent AChphtology. We combined the aMCI and
AD subjects into a single group for all analysesoider to preserve non-overlapping normal
control samples for the SN and aMCI/AD groups, fivéhe 73 NG participants reported in the
previous study(Mapstone et al., 2014) were incluaedlG for the SN group. Thus 68 of the
original 73 remained as N@or the aMCI/AD group $upplemental Figure ). As defined, the
participant groups were not significantly differérdm each other based on age, sex, and
education Table 1). There was a significant main effect of sex oncadion level when
comparing the SN and aMCI/AD groups (MANOVA F= 4.85= 0.003) such that the SN males
were more highly educated than the aMCI/AD fematssdefined, the groups did differ on the

cognitive Z-scoresSupplemental Figure 3.



2.3 Blood samples

All study participants provided a blood sample lo& $ame day as the cognitive testing.
Because certain chronobiological factors includiitgadian(Panda et al., 2002, Storch et al.,
2002, Reddy et al., 2006), seasonal(Reinberg,e1388, Walker et al., 1997) and diurnal
(Bollard et al., 2005, Walsh et al., 2006) rhythemns known to affect metabolism and
presumably ephemeral metabolites such as lipidsgr@mup has implemented strict
standardization of blood collection and handlinghnds (Mapstone et al., 2014, Fiandaca et al.,
2015). In this study, the blood draw was perforragalose as possible to the same time of day
and day of the year to control for circadian, seagand other chronobiological effects on the
blood metabolomics. All study participants underiygmnebotomy between 8am and 10am,
while fasting and withholding their morning medioat. Blood specimens were collected in
EDTA vacutainers and, after thorough mixing, plaocaedvet ice immediately after collection
and remained on ice until the blood components weparated within 24 hours, in order to
retard degradation of metabolites (Hammad et GlLDP Each sample yielded multiple 100 uL
plasma aliquots that were frozen immediately thigeeat -80°C until undergoing metabolomic
analyses. The smaller plasma aliquots allowed spatuse following a single freeze-thaw cycle
prior to metabolomic processing for all specimens.

Metabolomic analyses of the aMC/AD, Convegtan, and NG plasma samples were
completed in September 2013 and on the SN angldd@ples in November 2014. One-way
ANOVA on plasma sample storage length with subjectip as the independent variable
showed that the mean storage length was significdifferent across groups (F=22.31,
p<0.001). Post-hoc analysis showed that the platarage time of the two main groups under

study here, the SN and N@roups were not significantly different (SN me#&orage = 49.7



months, NG mean storage = 49.3 months), nor were the aMCHA® NG groups different
from each other (aMCI/AD mean storage = 38.2 mgmtli} mean storage = 37.1 months).
However, the Convertgeap samples had been stored for significantly longantall other

groups (Convertgleap mean storage = 59.8 monthSupplemental Table 3.

2.4 Reagents

LC/MS-grade acetonitrile (ACN), Isopropanol (IPAater and methanol were
purchased from Fisher Scientific (New Jersey, USAgh purity formic acid (99%) was
purchased from Thermo-Scientific (Rockford, IL).dWPisoquine, 4-Nitrobenzoic acid (4-NBA),
Pro-Asn, Glycoursodeoxycholic acid, Malic acid wprechased from Sigma (St. Louis, MO,
USA). All lipid standards including 14:0 LPA (lysbpsphatidic acid), 17:0 Ceramide, 12:0
LPC, 18:0 Lyso phosphatidylinositol (PI), and 2ph®sphatidylcholine (PC) were procured

from Avanti Polar Lipids Inc. (USA).

2.5 Targeted metabolomics using stable isotopeaidiu- multiple reaction monitoring- mass
spectrometry (SID-MRM-MS)

In this study, targeted metabolomic analysis o$pia samples was performed using the
Biocrates Absolute-IDQ P180 (BIOCRATES, Life Sciem&G, Innsbruck, Austria). This
validated targeted assay allows for simultaneotisction and quantification of metabolites in
plasma samples (10ul) in a high throughput manries.plasma samples were processed as per
the instructions by the manufacturer and analyzed wiple quadrupole mass spectrometer
(Xevo TQ-S, Waters Corporation, USA) operatingna MRM mode. The measurements were
made in a 96 well format for a total of 82 samp#eyen calibration standards and three quality
control samples were integrated in the kit. Brigthe flow injection analysis (FIA) tandem mass

spectrometry (MS/MS) method was used to quantggrmel of 144 lipids simultaneously by



MRM. The other metabolites are resolved on the UBh@ quantified using scheduled MRMs.
The kit facilitates absolute quantitation of 21 amacids, hexose, carnitine, 39 acylcarnitines,
14 sphingomyelins, 87 phosphatidylcholines andiggdmic amines. The abundance is
calculated from an area under the curve (AUC) hynadizing to the respective isotope labeled
internal standard and differential abundance betvdigerent participant groups was computed
based on relative ratios of normalized response.cbimcentration is expressed as nmol/L.
Human EDTA plasma samples spiked with metabolaadards were used as quality control
samples to assess reproducibility of the assaynigsn coefficient of variation (CV) for the 180
metabolites was 0.08 and 95% of the metabolitesah@¥ of <0.15 and all had CVs < 0.2. The
data were pre-processed using the MetIDQ softwBI@ CRATES, Life Science AG) prior to
statistical consideration. Raw abundance of eadhlméte for each group is reported in the
Supplemental MaterialS(Upplemental Table 6) Summary statistics for metabolites were

completed using MetaboAnalyst 3.0 (Xia and Wish20t,1, Xia et al., 2015)

2.6 Statistical Analysis

The primary analysis focused on creating a logr&gression model from the targeted
metabolomic data elements to classify the SN frieenNG. In addition, we wished to test
suitability of this model derived from participantsth superior memory in the aMCI/AD
participants; a group characterized by impaired orgmWe also wished to apply the 10-lipid
panel developed in our previous study (Mapstored. e2014) to the SN participants; a group
without clinical evidence for neurodegenerativeedise. Finally, we wished to create a
comprehensive model based on the metabolomic f=atfrl) memory function from the SN

model and 2) neurodegenerative disease from ourqudy published model.



The procedure for metabolite selection was simidaour previous report(Mapstone et al.,
2014). In the metabolomic discovery phase, we peréd targeted analysis using the Biocrates
AbsolutelDQ p180 kit on plasma from 2/3 of the SN and¥@rticipants (n=26 in each group)
while the remaining 1/3 of the samples from eadupgrwere reserved for an internal validation
phase. The abundance measurements for the me¢shaéte initially transformed using natural
log transformation and normalized via quantile naliration. We developed group classification
models using the least absolute shrinkage selecperator (LASSO)(Tibshirani, 1996) and
emphasizing selection of annotated metabolites wti@ssified the two groups (SN vs BC
with the greatest accuracy. To evaluate the priedigiower of the metabolite panel, we fit
delLong’s test of the receiver operating charadierffROC) regularized logistic regression
model based on the LASSO penalty for the discogehport (26 SN vs. 26 N We first
obtained the regularization path over a grid otiealfor the optimizing parametethrough N
fold cross-validation to generate stable estimaths.optimal value of the tuning parameéter
was then used to estimate the penalty regressifficents in the model. Models were fit using
the “glmnet” package in R, which uses cyclical odinate descent in a path-wise fashion. All of
the individual metabolites with nonzero coefficemtere retained for subsequent analysis.
Logistic regression was used to create a classifatel and the classification performance of
the model was assessed using deLong’s test oliadex the ROC curve (AUC), measuring the
predictive accuracy separately for the discove\alidation stages. In order to validate the
model from the discovery stage, we performed RO&yars with the validation set of SN (n =
15) and their matched N@1=15) as an internal validation. Positive pradewalue (PPV) and
negative predictive value (NPV) for the optimal siéimities and specificities were calculated

using an estimated prevalence of 5%. We consestatéstimated this figure from our statistical



definition of supernormal which requires memoryfpamance above one robust standard

deviation factoring in normal performance in otbegnitive domains.

3. Results

3.1 A panel of 12 metabolites distinguishes cogglifisuperior from control participants

The LASSO procedure selected twelve metabolitepdAate,
Hydroxyhexadecadienylcarnitine (C16:2-OH), 3-Hydmalmitoleylcarnitine (C16:1-OH), Lyso
PC a C28:1, Arginine, Valerylcarnitine (C5), LysG@ B C17:0, Asparagine, Citrulline,
Nitrotyrosine, PC aa C38:5, and Histamine) which the specific criteria for the classification
model Table 2). One of the 12 metabolites, 16:1-OH was featimemlir previously reported
panel of ten plasma lipids(Mapstone et al., 20TAg logistic regression classifier model
constructed with this set of metabolites produc&D&C AUC of 1.0 [95% CI: 1.0 - 1.0]
(Figure. 1A) indicating error-free classification of the SN ai@s groups. At the optimal
threshold, sensitivity was 1.0, specificity was, Ja0sitive predictive value (PPV) was 1.0, and
negative predictive value (NPV) was 13upplemental Table 3.

Because this procedure results in overfitting bsigie we applied the model to the
reserved validation group samples whose group meshipewas blinded to the statistical team.
Here, the classifier model produced a ROC AUC 89(095% CI: 0.77 - 1.0] indicating very
good separation of the SN and NEigure. 1B). We further confirmed model fit using the
Hosmer-Lemeshow test run at 10 folds in the disgpgaead validation groups separately, which
showed good calibration (p values > 0.05). In thkdation phase, sensitivity was 0.93,

specificity was 0.73, PPV was 0.92 and NPV was.0.76

10



Five of the selected metabolites were not concadlgarpressed in the discovery and
validation cohorts. Given the small sample size lack of statistical significance, we did not
exclude the five non-concordant metabolites fromfmal model. In the validation dataset, post-
hoc analyses using only the seven concordant metgesulted in a non-significant decline in
AUC compared to the 12-metabolite panel (deLonggs: {Z| = 1.28, p=0.20) lending support to

the inclusion of the non-concordant metabolitespplementalFigure 3).

3.2 Twelve metabolite panel distinguishes cognitivapaired from control participants

We then sought to determine whether the 12-metaodinel, reflecting superior
memory function, could also discriminate individaialith impaired cognition. We reversed the
signs on the coefficients in our 12-metabolite siffer model and applied this to the aMCI/AD
and NG groups. The reversed 12 metabolite classifierehptbduced a ROC AUC of 1.0 [95%
Cl: 1.0 - 1.0] Fig, 1C) indicating error-free classification of the memanpaired aMCI/AD

group from their cognitively normal controls.

3.3 Twelve metabolite panel distinguishes prechhAD from control participants

We then sought to examine the utility of the regdr§2-metabolite classifier model in
preclinical AD by applying it to 28 Convertgiap participants, who phenoconverted from
normal cognition at entry in the study to aMCI dd An average 2.1 years later, and their
cognitively normal controls. The reversed 12-meliébalassifier model produced a ROC AUC
of 0.97 [95% CI: 0.92 — 1.0] for the 28 Convegigp participants compared to their controls
(Fig. 1D). This is particularly interesting as the Conveftgp participants did not, by definition,
demonstrate memory impairment, but did so witherext several years, suggesting the 12
metabolites may reflect early memory-related biocical alterations that precede threshold for

clinical detection.
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3.4 Combined 10-lipid and twelve metabolite pamelsurately classifies all groups.

We then explored the utility of our previously refgeal 10 lipid panel(Mapstone et al.,
2014), which shares a single common metabolite (CO&1) with the 12 metabolite panel, to
distinguish the SN from the N@roup. We found only moderate evidence that theéo, a
proposed marker of early neurodegeneration, iscaged with the physiology of superior
memory ability (ROC AUC = 0.71, 95% CI: 0.59 - 0)§3upplemental Table 4. The
combination of the 10 lipid panel, putatively reggrting early neurodegeneration, with the 12
metabolite panel, putatively representing memongfion, into a 21 metabolite panel (with
C16:1-OH overlapped), however, accurately clagsifiiee SN and the N@roups (ROC AUC =
1.0, 95%CI: 1.0 - 1.0), the aMCI/AD and R@roups (ROC AUC =1.0 95% CI = 1.0 - 1.0), and
the Convertgfeap and NG groups (ROC AUC = 0.99, 95% CI: 0.97 - 1.8upplemental

Table 4).

3.5 Twelve metabolite panel specific to memoriitabi

Finally, we developed a plasma 12-metabolite indei)g the standardized coefficient
(Beta) of each metabolite in the SN (n=41) vs;{&41) logistic regression classifier model
(Table 2) to weigh the natural log transformed metaboliigralance and create a single 12
metabolite-index for all participants in the stU®N n= 41, aMC/AD n=74, and combined NC
n=109) Figure. 2A). Linear regression models of the 12-metabolitkeinand the five cognitive
domains (4, Zexe Zian» Zmem Zvis) controlling for group (SN, aMCI/AD, NC) showed a
significant relationship between the 12-metabaolitlex and memory composite Z-scores in the
aMCI/AD, NC (combined Ngand NG), and SN groups (Beta = 0.09, t = 2.30, p = 0.02&2n
adjusting for groupKigure. 2B). Importantly, the 12-metabolite index was notassted with

other cognitive domains supporting its specifitdymemory processeSpplemental Table 5.
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4. Discussion

Here we report a set of plasma-derived metabdliischaracterize a state of successful
cognitive aging in a limited clinical cohort. Theang association of these metabolites
(phospholipids, acylcarnitines, amino acids, arajenic amines) with the composite memory
score, and the specificity for memory, supportuke of this molecular-phenotyping approach in
the discovery of biologically relevant pathwaysasated with successful cognitive aging.
While the precise molecular network of interactionthese 12 metabolites remains to be
elucidated, their apparent connection to superiemory performance is provocativieigure 3).
We found lower levels of L-arginine in our partiaigs with superior memory. A recent plasma
metabolomic study showed elevated L-arginine lewetgable MCI subjects, as well as in MCI
subjects who converted to AD when compared to os{Graham et al., 2015). In addition,
other groups have shown evidence of altered trgotsaond protein levels of arginase, together
with reduced ornithine decarboxylase and polyartemels in AD brain tissue, suggesting a link
between arginine metabolism and AD (Morrison et1#895, Morrison et al., 1998, Colton et al.,
2006, Hansmannel et al., 2010). In contrast, redoaf L-arginine in our SN group, while yet
to be fully dissected, might reflect rapid turnoeéthe substrate to form L-citrulline through
either the urea cycle or the nitric oxide (NO) e&tlu et al., 2014). Up-regulation of the urea
cycle decreases nitrosative stress, which is ciamdigvith the reduced levels of nitrotyrosine
noted in our SN group. Further, reduction of nitrosine and histamine in our SN participants
may reflect a state of lower overall oxidative strand systemic inflammation (Tohgi et al.,

1999, Alvarez, 2009) in this model of successfigrative aging.

13



These metabolomic results reveal a unique settehpial physiological markers for a
diverse range of memory abilities (aMCI/AD < preatal AD < normal < SN) and implicate
several memory-related physiological processes.upnegulation of aspartate, a potent N-
methyl-D-aspartate receptor agonist may suppod®yn plasticity and superior memory
(Shimizu et al., 2000) characterizing SN particigain addition, putatively increased
bioavailability of NO in SN participants may mecisitally enhance long term
potentiation(Schuman and Madison, 1991) and prosyitaptic plasticity(Nikonenko et al.,
2013, Chakroborty et al., 2015) and cognitive resg@rores-Arnaiz et al., 2006). In the aMCI
and AD participants however, dysregulation of thesenory-relevant processes may contribute
to the characteristic memory loss of these conustidVe also found evidence of these metabolic
disruptions in the preclinical state of AD wherg,definition, memory ability is not impaired,
but the antecedent pathobiology of future memosg lmay be present. This observation in
particular suggests metabolic disruption occursaambe detected early in the disease process
and may be related to the emergence of tau pathalog neurodegeneration characterizing
stage 2 preclinical AD(Sperling et al., 2011). Welfsupport for this notion in the strong
classification performance of the combined memay meurodegeneration 21-metabolite model
for both aMCI/AD and preclinical AD; a model whiamay more comprehensively reflect AD
pathobiology. In the cognitively successful SN braifficient information transfer in memory
and executive brain networks(LePort et al., 2018y neflect successful adjustments to age-
related neurophysiological decline(Grady, 2008)dntrast, the memory impairment associated
with the AD brain may reflect inadequate or faiminpensation to cumulative pathobiologic

events(Mesulam, 2000).
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These results may have important implications forting successful cognitive aging,
which can lead to improved functional independearte quality of life for millions of older
adults, however, there are several limitationh#ihferences we can draw from this study. First,
like other peripheral blood biomarker studies @ibirelated conditions, the link between central
and peripheral metabolomic reflections is likelybindirect. This is less of a problem when
investigating animal models, where central andpbenial biochemistry can be directly
measured, or when using matrices such as humalrospénal fluid, which is in direct contact
with the brain parenchyma. Although certain explems (Fiandaca et al., 2015) provide
plausible support for direct peripheral metabolomanifestations resulting from an active
central brain process, the direct proof for sucstylates is currently lacking.

Second, as with many other investigations utilizaegipheral biosignatures of brain-
related conditions, replication/validation of oasults is required. To do so, investigators must
not only utilize similar study designs and analytiethods, but also investigate similar subject
groups (demographics) and matrices (plasma, andganotn), as in our study. In addition, our
small cohort of analyzed subjects makes generalizaff our results quite challenging. Future
analyses of larger demographically different subgetorts are necessary to investigate the
applicability of our results beyond our limited gp Expanded studies, using similar
metabolomic methods and comparably defined subjpatside opportunities for novel
metabolomic discovery that may support, critigueg@beyond our current observations.

Third, we do not know the impact of plasma samfieagie duration on measurement of
these metabolites. The Convegtglo samples had been stored for significantly longeation
(approximately 23 months longer) than the otheugsoand we do not know for sure if there

was any effect on sample quality and ultimatelgtieé metabolite abundances due to this.
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Plasma sample quality very likely deteriorates asended storage (>10 years) even at -80C,
but recent work suggests that short storage pedabdp to 2.5 years has negligible effects on
metabolite measurements (Pinto et al., 2014). Eurtbre, we believe that differences in sample
storage duration did not significantly affect thetabolomic results here because the same
control group (NG) was used as comparison for both the aMCI/ AD @advertegeap groups.
The NG and aMCI/AD samples had very similar mean stodagations. If sample storage
duration significantly influences metabolite abumckawe would expect to have seen differences
in these comparisons, but the ROC AUC results édin lgroups were nearly identical for the 12-
metabolite (aMCI/AD vs Ng = 1.0, Convertgfeap VS NGo = 0.97) and the 21-metabolite panels
(aMCI/AD vs NGo = 1.0, Convertgreap VS NGo = 0.99) suggesting that storage duration, at least
the 23 month difference in our study, had mininfédct. Certainly, greater storage duration
(e.g., 10 or more years) may have a much greaggatron sample quality and metabolite
measurements.

Finally, there is a lack of consensus on how tangethe construct of successful
cognitive aging and we recognize that our operatidefinition focusing on the singular feature
of memory ability may be limited. We chose supen@mmory as an exemplar of successful
cognitive aging in order to 1) discretely operatilire the construct, 2) recognize the relative
complexity of memory above other cognitive abibti@.g., attention), and 3) to provide a
common dimension for comparison with a more commosked model of unsuccessful
cognitive aging, AD where memory impairment is tiaedinal feature. We do not believe that
superior memory alone defines the entirety of ss&fté aging and recognize that other attempts
at operationalizing are equally valid and may pdevadditional useful insights into aging

success. We also recognize that interventions degitp directly improve memory or mitigate
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memory decline may not lead to beneficial effectdumctional capacity or quality of life in
older adults. However, we anticipate that an inmpcounderstanding of both health- and
disease-related metabolomic characteristics mayatily lead to preventative strategies that
not only maximize general health and longevity, &lab reduce likelihood of age-related

cognitive decline.
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Figure Legends

Figure. 1. Results of ROC analysis using the 12-nadiolite panel.This figure shows plots
of SN vs NG ROC analysis using the 12-metabolite panel ineted) discovery (a) and
validation (b) phases and application of the 12atelite panel to the external aMCI/AD (c)
and Convertgfeap (d) samples. 95% confidence intervals shadedue.iLrosshair on ROC
plot represents optimal ROC threshold. SN = Supenah NG = Normal control for
supernormal sample; aMCI/AD = amnestic mild cogeiiimpairment and Alzheimer’'s
disease; Convertgeap = Preclinical AD; NG= Normal control for Convertggap and

aMCI/AD samples.

Figure. 2. 12-metabolite index and relationship wh memory performance.This figure

shows the derived 12-metabolite index for the tigreeips (SN, NC, and aMCI/AD) (a). Box-
plot for index values between groups. Using mutire logistic regression, the 12-metabolite
index significantly differentiated the SN, NC, aadlCI/AD groups (all p <.013). The
relationship between the 12-metabolite index antharg composite z-score is shown for each
group of participants in the study (b)ne%= Memory composite score; SN = Supernormal; NC
= Normal control (combined N@nd NG); aMCI/AD = amnestic mild cognitive impairment
and Alzheimer’s disease. Note. ** p < .01; *** p.801.

Figure. 3. Biological pathways implicated in superior mempgrformance. This diagram shows
the pathways implicated by the metabolomic resflthe SN vs Ngcomparisons. The bold
orange boxes show the metabolites which were sugnifly altered in the analysis and the
arrows associated with the metabolite indicatddkiel of the metabolite in the SN group
relative to the Nggroup. For the aMCI/AD vs N§&comparison, the arrows would be reversed

indicating the opposite relationship between theleof each metabolite relative to the HNC



Tables

Table 1.Demographic Details

Mean Age | Number Mean BMI | Mean Education Mean
Group n years (SD) | Male (%) | % ApoE4 (SD) years (SD) MMSE (SD)
SN 41 | 83.22 (3.37)| 20 (48.8)|5/41 (12%)| 26.55 (4.94]) 16.41 (2.68) 29.05 (1.07
Discovery| 26 | 82.69 (3.50)| 13 (50.0)| 0/26 (0%) | 26.10 (4.61] 15.92 (2.37) 29.15 (1.08
Validation | 15 | 84.13 (3.04) 7 (46.7) | 5/15 (33%)| 27.34 (5.54] 17.27 (3.06) 28.87 (1.06
NCs 41 | 83.29(3.82)| 20 (48.8)| 4/41 (9%) |25.53 (3.21] 16.24 (2.47) 28.66 (1.37
Discovery| 26 | 82.88 (3.34)| 18 (69.2)| 4/26 (15%)| 25.08 (2.91] 16.50 (2.63) 28.68 (1.29
Validation | 15 | 84.50 (4.42) 2 (14.3) | 0/15 (0%) | 26.29 (3.63] 15.86 (2.25) 28.62 (1.27
aMCI/AD 74 | 81.93(4.37)| 20 (27.0)|24/74 (32%| 25.93 (3.97] 15.36 (2.45) 26.33 (2.77
Convertegean” 28 | 80.21 (4.02)| 12 (42.9)|5/28 (17%)|26.51 (4.54] 15.04 (2.74) 28.61 (2.49
NCo 68 | 81.69 (3.40)| 26 (38.2)[16/68 (23%]27.03 (4.77] 15.43 (2.40) 28.19 (3.75
Note: SN = Supernormal; NG Normal control for supernormal sample; aMCI/AD amnestic mild cognitiy

impairment and Alzheimer’s disease group; Convggigy = Preclinical AD; NG = Normal control for Convertggap
and aMCI/AD sample. The aMCI/AD, Conveggkip, and NG participants were included in our previg
study(Mapstone et al., 2014). MMSE = Mini Mentaht8t Examination. BMI = Body Mass Inde€kBaseline data f
subjects who converted to aMCI/AD within 2.1 years.




Table 2. Natural Log Transformed Data of the Discogry and Internal Validation Samples for the 12-

Metabolite Panel.

1%

Discovery sample Validation sample Total samplé
* *

Metabolite Group | Mean| SD tt(f;t Mean| SD tt(%“;'t Beta, SE (pJ
Ardinine SN 416 | 037] -084 | 434|051 -1.22 | -0.17,0.96
g NC. | 425 | 0.40| (41) | 453 | 0.32| (.23) (.10)
Hydroxyhedadecadienylcarnitin{ SN -4.68 | 0.24| -1.02 | -4.68| 0.23| -1.74 -0.25, 2.49

(C16:2-OH) NCs -461| 024 | (.32) | -456| 0.15| (.10) (.01)
3-Hydroxypalmitoleylcarnitine | SN -459| 0.25| -0.38 | -4.62| 0.25| -2.17 -0.05, 2.08
(C16:1-OH) NC, | -457|0.18]| (70) | .4.43] 0.20| (.04) (.90)
_ SN 0.84 | 0.27] -1.02 | 0.78 | 0.27| -1.31 | -0.34,1.70
Lyso PCaCl17:0 NC. | 0.91 | 0.27| (31) | 0.93 | 0.37| (.20) (.004)
Asparagine SN 419 | 022] -1.03 | 420 ] 0.18] -219 | -0.67,0.88
parag NC. | 426 | 022| (31) | 436 | 021 (.01) (.001)
_ SN -0.81] 0.29] 1.77 | -0.75] 0.33] -0.90 | -0.01, 1.42
LysoPCaC28:1 NC. | -0.93|020| (08) | -0.64| 0.28]| (:38) (.99)
. . SN -0.30| 0.18| 0.14 | -0.18| 0.13| 2.86 | 0.94,1.42
Nitrotyrosine NC. | -0.31]0.26| (.89) | -0.52| 0.42| (.007) (.009)
Valerylcarnitine (C5) SN 1991 0.49| 090 | -215] 0.34] -0.32 | 0.10,0.78
y NC. | 212|050 (37) | 211|039 (.75) (.08)
Histamine SN -0.39] 2.30| -0.29 | -0.59| 2.17| 0.17 | 0.03,0.13
NC. | -0.19|2.65| (78) | -0.76 | 3.41| (.87) (.81)
, SN 416 | 0.30| 2.00 | 414 | 0.28] 0.23 | 0.41,1.87
PC aa C38:5 NC. 3.98 | 0.32| (05) | 412 | 028 (.82) (.001)
Aspartate SN 3.04 | 048] 234 | 3.02 | 042 -1.42 | 0.35, 0.88
P NCs 2.73 | 048] (.02) | 3.19 | 0.23| (.18) (.15)
Citrulline SN 4151 032] 128 | 410 | 0.26| -1.72 | 0.80, 1.91
NCs 4.04 | 027 | (21) | 4.28 | 0.28 | (.10) (.009)

Note: SN = Supernormal; NE Normal control for supernormal sample; *Significaifference between the
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groups for individual metabolites is not required ihclusion in the logistic regression classifiendel.” Beta
weights are from the overall classifier model Wt vs. NG as the outcome and 12 metabolites collective
as the predictors for the Discovery and Validasamples. Negative Beta weights indicate lower ahnoe
of the metabolite in the SN group compared to tRigd¥oup, while positive Beta weights reflect greater

A

abundance in the SN group.
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Highlights

We examined plasma metabolomics of older adults with superior memory

12 metabolites were differentially abundant in these subjects compared to controls
These 12 metabolites were abundant in the opposite direction in Alzheimer’s disease
The metabolites are involved in inflammation, oxidative stress, and NO availability
Modulation of these pathways may promote successful cognitive aging trajectories
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