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Abstract:  

As the world population ages, primary prevention of age-related cognitive decline and disability 

will become increasingly important. Prevention strategies are often developed from an 

understanding of disease pathobiology, but models of biological success may provide additional 

useful insights. Here, we studied 224 older adults, some with superior memory performance 

(n=41), some with normal memory performance (n=109), and some with mild cognitive 

impairment (MCI) or Alzheimer’s disease (AD) (n=74) to understand metabolomic differences 

which might inform future interventions to promote cognitive health. Plasma metabolomics 

revealed significant differential abundance of 12 metabolites in those with superior memory 

relative to controls (ROC AUC = 0.89) and the inverse abundance pattern in the MCI, AD (AUC 

= 1.0) and even preclinical AD groups relative to controls (AUC = 0.97). The 12 metabolites are 

components of key metabolic pathways regulating oxidative stress, inflammation, and nitric 

oxide bioavailability. These findings from opposite ends of the cognitive continuum highlight the 

role of these pathways in superior memory abilities and whose failure may contribute to age-

related memory impairment. These pathways may be targeted to promote successful cognitive 

aging. 

 

Keywords: Memory, Metabolomics, Alzheimer’s Disease, Oxidative Stress, Nitric Oxide, 

Arginine Metabolism 

 

Abbreviations:  ROC- Receiver Operating Characteristic, AUC- Area under the curve, EDTA- 

ethylene diamine tetraacetic acid, LC/MS- liquid chromatography/mass spectrometry, UPLC- 

Ultra Performance Liquid Chromatography, MRM- Multiple reaction monitoring 
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1. Introduction 

Aging is characterized by the accumulation of life experiences that present opportunities and 

challenges for continued growth and development. Aging research has historically focused on 

what happens when we fail to negotiate these challenges and relatively less attention has been 

paid to understanding characteristics of successful aging. While there is no generally accepted 

definition of successful aging, most include some concept of freedom from physical and 

cognitive disability (Depp and Jeste, 2006) which optimize functional capacity and quality of 

life.  Maintaining cognitive abilities in the face of age-related physiological changes represents a 

significant challenge especially given the diversity of individual life experience and complexity 

of brain organization which interact to produce individual cognitive trajectories (Albert, 1997). 

From the fourth decade of life onward, the most common cognitive trajectory is characterized by 

subtle decline in many abilities, most frequently those requiring rapid transfer of information 

across widespread brain networks (Salthouse, 2009), but this is not invariant and relative stability 

and improvement in complex cognitive abilities such as memory is occasionally encountered into 

old age (Rowe and Kahn, 1987, Gefen et al., 2014). These alternate paths may be supported by 

resistance to age-related accumulation of pathologies (Balasubramanian et al., 2012) or cognitive 

reserve (Stern, 2012) or enhanced neuroplasticity (Gutchess, 2014).  

The search for lower cost, minimally invasive, high-throughput biosignatures of cognitive 

dysfunction has driven technological advances in metabolomic platforms (Li et al., 2010, 

Quinones and Kaddurah-Daouk, 2009). For example, peripheral blood metabolomic analyses 

allow qualitative and quantitative assessment of circulating small molecules representing central 

metabolic pathways (Voyle et al., 2016). Together with genomics, transcriptomics, and 

proteomics, metabolomics is helping expand our detailed appreciation of systems biology. The 
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biofluid matrix (e.g., plasma or serum) being interrogated via metabolomics, along with the 

molecular separation methods used (e.g., gas versus liquid chromatography) coupled with mass 

spectrometry for molecular identification, determines the specific yield of molecular species that 

can be used as a phenotypic readout. These data provide direct and/or indirect evidence for 

altered biochemical pathways linked to pathobiology (Pan et al., 2016) and brain structural 

(Ciavardelli et al., 2016) and functional (Cansev, 2016) integrity . The scope and depth of such 

molecular perturbations defined through metabolomics may ultimately empower individualized 

molecular phenotyping and our understanding of disease-specific mechanisms. Herein, we report 

an analysis of the plasma metabolome of older adults with superior memory. Through this 

investigation we sought new information about the biochemical processes that support successful 

cognitive aging trajectories and may provide insights into age-related cognitive disorders, such 

as Alzheimer’s disease (AD), where memory impairment is the cardinal feature. 

 

2.  Methods 

2.1 Participants 

All participants in this study were recruited from the communities of Rochester, NY or 

Irvine, CA as part of the Rochester/Orange County Aging Study (R/OCAS). Inclusion criteria 

included age over 70 years, good overall physical health, visual acuity and hearing sufficient for 

cognitive testing, and proficiency with the English language. Exclusion criteria included major 

neurological or psychiatric illness including a known diagnosis of any phenotype of Mild 

Cognitive Impairment (MCI) or AD, current or recent (<1 month) use of anticonvulsants, 

neuroleptics, highly active anti-retroviral therapy (HAART), antiemetics, and antipsychotics for 

any reason, and serious blood disorder including chronic abnormalities in complete blood count 
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and anemia requiring therapy and/or transfusion.  All R/OCAS participants gave written 

informed consent and all procedures in this study were approved by Research Studies Review 

Boards at the University of Rochester, University of California Irvine, and Georgetown 

University.  

2.2 Cognitive assessment and classification 

As part of the R/OCAS, all study participants underwent yearly cognitive testing and 

provided a yearly blood sample. Cognitive testing was performed at each yearly visit following 

the blood draw and breakfast. The cognitive battery consisted of commonly used measures 

administered in the standardized manner (Mapstone et al., 2014) (Supplemental Table 1). The 

verbal episodic memory measure was the Rey Auditory Verbal Learning Test (RAVLT) (Rey, 

1964). We classified the subjects in this study using composite Z-scores based on the group 

characteristics adjusted for age, education, sex, and visit. Adjustment for visit allowed us to 

account for putative practice effects over the multi-year study. The five composite cognitive 

domain Z-scores included: attention (Zatt); executive (Zexe); language (Zlan); memory (Zmem); and 

visuospatial (Zvis)(Mapstone et al., 2014) (Supplemental Table 2). To reduce the effect of 

cognitively impaired participants on the mean and SD, age-, education-, sex-, and visit-adjusted 

residuals from each domain Z-score model were robustly standardized to have median 0 and 

robust SD=1, where the robust SD=IQR/1.35, as 1.35 is the IQR (Inter-Quartile Range) of a 

standard normal distribution.  

A total of 525 participants were enrolled in the R/OCAS and 497 participants had 

complete blood and cognitive data.  From this group of 497, we identified 41 participants (8% of 

the total sample) showing superior memory abilities using the above criteria. Superior memory 

for the supernormal (SN) group was defined as Zmem > 1.35 SD and corresponds to the 90th%ile. 
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To further isolate successful cognitive aging in the SN group, all other domain composite Z-

scores were required to be > -1.35 SD or greater than the 10th%ile. After defining the SN 

participants we used frequency matching to select in a pseudo random manner an age-, 

education-, and sex-matched normal control group of 41 participants (NCs) for the SN group.  In 

order to enhance the specificity of our analyses, all normal control participants in this study were 

conservatively defined with Zmem +1 SD (15th %ile – 85th%ile) of the cohort median rather than 

simply non-impaired or  > -1.35, and all other Z-scores > -1.35 SD (Supplemental Figure 1).  

The same cognitive assessment and Z-score methods were used to define the 74 amnestic 

MCI (aMCI), AD and preclinical AD (ConverterpreAD), and their 73 matched control participants 

(NCo) detailed in our previous work(Mapstone et al., 2014). We chose to include the amnestic 

phenotype of MCI rather than include other behavioral phenotypes in order to conservatively 

restrict our analysis to a group of MCI with the highest likelihood of common underlying 

pathobiology. Thus, our combined aMCI/AD group ostensibly represents a relatively 

homogenous group of individuals with nascent AD pathobiology. We combined the aMCI and 

AD subjects into a single group for all analyses. In order to preserve non-overlapping normal 

control samples for the SN and aMCI/AD groups, five of the 73 NCo participants reported in the 

previous study(Mapstone et al., 2014) were included as NCs for the SN group.  Thus 68 of the 

original 73 remained as NCo for the aMCI/AD group (Supplemental Figure 1). As defined, the 

participant groups were not significantly different from each other based on age, sex, and 

education (Table 1). There was a significant main effect of sex on education level when 

comparing the SN and aMCI/AD groups (MANOVA F= 4.85, p = 0.003) such that the SN males 

were more highly educated than the aMCI/AD females. As defined, the groups did differ on the 

cognitive Z-scores (Supplemental Figure 2).  
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2.3 Blood samples 

All study participants provided a blood sample on the same day as the cognitive testing.  

Because certain chronobiological factors including circadian(Panda et al., 2002, Storch et al., 

2002, Reddy et al., 2006), seasonal(Reinberg et al., 1988, Walker et al., 1997) and diurnal 

(Bollard et al., 2005, Walsh et al., 2006) rhythms are known to affect metabolism and 

presumably ephemeral metabolites such as lipids, our group has implemented strict 

standardization of blood collection and handling methods (Mapstone et al., 2014, Fiandaca et al., 

2015). In this study, the blood draw was performed as close as possible to the same time of day 

and day of the year to control for circadian, seasonal, and other chronobiological effects on the 

blood metabolomics. All study participants underwent phlebotomy between 8am and 10am, 

while fasting and withholding their morning medications. Blood specimens were collected in 

EDTA vacutainers and, after thorough mixing, placed on wet ice immediately after collection 

and remained on ice until the blood components were separated within 24 hours, in order to 

retard degradation of metabolites (Hammad et al., 2010). Each sample yielded multiple 100 uL 

plasma aliquots that were frozen immediately thereafter at -80°C until undergoing metabolomic 

analyses. The smaller plasma aliquots allowed specimen use following a single freeze-thaw cycle 

prior to metabolomic processing for all specimens.  

Metabolomic analyses of the aMC/AD, ConverterpreAD, and NCO plasma samples were 

completed in September 2013 and on the SN and NCS samples in November 2014. One-way 

ANOVA on plasma sample storage length with subject group as the independent variable 

showed that the mean storage length was significantly different across groups (F=22.31, 

p<0.001). Post-hoc analysis showed that the plasma storage time of the two main groups under 

study here, the SN and NCS groups were not significantly different (SN mean storage = 49.7 
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months, NCS mean storage = 49.3 months), nor were the aMCI/AD and NCO groups different 

from each other (aMCI/AD mean storage = 38.2 months, NCO mean storage = 37.1 months). 

However, the ConverterpreAD samples had been stored for significantly longer than all other 

groups (ConverterpreAD mean storage = 59.8 months) (Supplemental Table 3). 

2.4 Reagents 

LC/MS-grade acetonitrile (ACN), Isopropanol (IPA), water and methanol were 

purchased from Fisher Scientific (New Jersey, USA). High purity formic acid (99%) was 

purchased from Thermo-Scientific (Rockford, IL). Debrisoquine, 4-Nitrobenzoic acid (4-NBA), 

Pro-Asn, Glycoursodeoxycholic acid, Malic acid were purchased from Sigma (St. Louis, MO, 

USA). All lipid standards including 14:0 LPA (lysophosphatidic acid), 17:0 Ceramide, 12:0 

LPC, 18:0 Lyso phosphatidylinositol (PI), and 22:6 phosphatidylcholine (PC) were procured 

from Avanti Polar Lipids Inc. (USA). 

2.5 Targeted metabolomics using stable isotope dilution – multiple reaction monitoring- mass 

spectrometry (SID-MRM-MS) 

In this study, targeted metabolomic analysis of plasma samples was performed using the 

Biocrates Absolute-IDQ P180 (BIOCRATES, Life Science AG, Innsbruck, Austria). This 

validated targeted assay allows for simultaneous detection and quantification of metabolites in 

plasma samples (10uL) in a high throughput manner. The plasma samples were processed as per 

the instructions by the manufacturer and analyzed on a triple quadrupole mass spectrometer 

(Xevo TQ-S, Waters Corporation, USA) operating in the MRM mode. The measurements were 

made in a 96 well format for a total of 82 samples, seven calibration standards and three quality 

control samples were integrated in the kit. Briefly, the flow injection analysis (FIA) tandem mass 

spectrometry (MS/MS) method was used to quantify a panel of 144 lipids simultaneously by 
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MRM. The other metabolites are resolved on the UPLC and quantified using scheduled MRMs. 

The kit facilitates absolute quantitation of 21 amino acids, hexose, carnitine, 39 acylcarnitines, 

14 sphingomyelins, 87 phosphatidylcholines and 21 biogenic amines. The abundance is 

calculated from an area under the curve (AUC) by normalizing to the respective isotope labeled 

internal standard and differential abundance between different participant groups was computed 

based on relative ratios of normalized response. The concentration is expressed as nmol/L. 

Human EDTA plasma samples spiked with metabolite standards were used as quality control 

samples to assess reproducibility of the assay. The mean coefficient of variation (CV) for the 180 

metabolites was 0.08 and 95% of the metabolites had a CV of <0.15 and all had CVs < 0.2. The 

data were pre-processed using the MetIDQ software (BIOCRATES, Life Science AG) prior to 

statistical consideration. Raw abundance of each metabolite for each group is reported in the 

Supplemental Materials (Supplemental Table 6). Summary statistics for metabolites were 

completed using MetaboAnalyst 3.0 (Xia and Wishart, 2011, Xia et al., 2015) 

2.6 Statistical Analysis 

The primary analysis focused on creating a logistic regression model from the targeted 

metabolomic data elements to classify the SN from the NCs. In addition, we wished to test 

suitability of this model derived from participants with superior memory in the aMCI/AD 

participants; a group characterized by impaired memory.  We also wished to apply the 10-lipid 

panel developed in our previous study (Mapstone et al., 2014) to the SN participants; a group 

without clinical evidence for neurodegenerative disease. Finally, we wished to create a 

comprehensive model based on the metabolomic features of 1) memory function from the SN 

model and 2) neurodegenerative disease from our previously published model.  
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The procedure for metabolite selection was similar to our previous report(Mapstone et al., 

2014). In the metabolomic discovery phase, we performed targeted analysis using the Biocrates 

Absolute IDQ p180 kit on plasma from 2/3 of the SN and NCs participants (n=26 in each group) 

while the remaining 1/3 of the samples from each group were reserved for an internal validation 

phase. The abundance measurements for the metabolites were initially transformed using natural 

log transformation and normalized via quantile normalization. We developed group classification 

models using the least absolute shrinkage selection operator (LASSO)(Tibshirani, 1996) and 

emphasizing selection of annotated metabolites which classified the two groups (SN vs NCs) 

with the greatest accuracy. To evaluate the predictive power of the metabolite panel, we fit 

deLong’s test of the receiver operating characteristic (ROC) regularized logistic regression 

model based on the LASSO penalty for the discovery cohort (26 SN vs. 26 NCs). We first 

obtained the regularization path over a grid of values for the optimizing parameter λ through N 

fold cross-validation to generate stable estimates. The optimal value of the tuning parameter λ 

was then used to estimate the penalty regression coefficients in the model. Models were fit using 

the ‘‘glmnet” package in R, which uses cyclical coordinate descent in a path-wise fashion. All of 

the individual metabolites with nonzero coefficients were retained for subsequent analysis. 

Logistic regression was used to create a classifier model and the classification performance of 

the model was assessed using deLong’s test of area under the ROC curve (AUC), measuring the 

predictive accuracy separately for the discovery and validation stages. In order to validate the 

model from the discovery stage, we performed ROC analyses with the validation set of SN (n = 

15) and their matched NCs (n=15) as an internal validation. Positive predictive value (PPV) and 

negative predictive value (NPV) for the optimal sensitivities and specificities were calculated 

using an estimated prevalence of 5%. We conservatively estimated this figure from our statistical 
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definition of supernormal which requires memory performance above one robust standard 

deviation factoring in normal performance in other cognitive domains. 

 

3. Results  

3.1 A panel of 12 metabolites distinguishes cognitively superior from control participants 

The LASSO procedure selected twelve metabolites (Aspartate, 

Hydroxyhexadecadienylcarnitine (C16:2-OH), 3-Hydroxypalmitoleylcarnitine (C16:1-OH), Lyso 

PC a C28:1, Arginine, Valerylcarnitine (C5), Lyso PC a C17:0, Asparagine, Citrulline, 

Nitrotyrosine, PC aa C38:5, and Histamine) which met the specific criteria for the classification 

model (Table 2). One of the 12 metabolites, 16:1-OH was featured in our previously reported 

panel of ten plasma lipids(Mapstone et al., 2014). The logistic regression classifier model 

constructed with this set of metabolites produced a ROC AUC of 1.0 [95% CI: 1.0 - 1.0] 

(Figure. 1A) indicating error-free classification of the SN and NCs groups. At the optimal 

threshold, sensitivity was 1.0, specificity was 1.0, positive predictive value (PPV) was 1.0, and 

negative predictive value (NPV) was 1.0 (Supplemental Table 4).  

Because this procedure results in overfitting by design, we applied the model to the 

reserved validation group samples whose group membership was blinded to the statistical team. 

Here, the classifier model produced a ROC AUC of 0.89 [95% CI: 0.77 - 1.0] indicating very 

good separation of the SN and NCs (Figure. 1B). We further confirmed model fit using the 

Hosmer-Lemeshow test run at 10 folds in the discovery and validation groups separately, which 

showed good calibration (p values > 0.05). In the validation phase, sensitivity was 0.93, 

specificity was 0.73, PPV was 0.92 and NPV was 0.76.  
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Five of the selected metabolites were not concordantly expressed in the discovery and 

validation cohorts.  Given the small sample size and lack of statistical significance, we did not 

exclude the five non-concordant metabolites from our final model. In the validation dataset, post-

hoc analyses using only the seven concordant metabolites resulted in a non-significant decline in 

AUC compared to the 12-metabolite panel (deLong’s test: |Z| = 1.28, p=0.20) lending support to 

the inclusion of the non-concordant metabolites (Supplemental Figure 3).  

3.2 Twelve metabolite panel distinguishes cognitively impaired from control participants 

We then sought to determine whether the 12-metabolite panel, reflecting superior 

memory function, could also discriminate individuals with impaired cognition. We reversed the 

signs on the coefficients in our 12-metabolite classifier model and applied this to the aMCI/AD 

and NCo groups.  The reversed 12 metabolite classifier model produced a ROC AUC of 1.0 [95% 

CI: 1.0 - 1.0] (Fig, 1C) indicating error-free classification of the memory impaired aMCI/AD 

group from their cognitively normal controls. 

3.3  Twelve metabolite panel distinguishes preclinical AD from control participants 

We then sought to examine the utility of the reversed 12-metabolite classifier model in 

preclinical AD by applying it to 28 ConverterpreAD participants, who phenoconverted from 

normal cognition at entry in the study to aMCI or AD on average 2.1 years later, and their 

cognitively normal controls. The reversed 12-metabolite classifier model produced a ROC AUC 

of 0.97 [95% CI: 0.92 – 1.0] for the 28 ConverterpreAD participants compared to their controls 

(Fig. 1D). This is particularly interesting as the ConverterpreAD participants did not, by definition, 

demonstrate memory impairment, but did so within the next several years, suggesting the 12 

metabolites may reflect early memory-related biochemical alterations that precede threshold for 

clinical detection.  
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3.4 Combined 10-lipid and twelve metabolite panels accurately classifies all groups.   

We then explored the utility of our previously reported 10 lipid panel(Mapstone et al., 

2014), which shares a single common metabolite (C16:1-OH) with the 12 metabolite panel, to 

distinguish the SN from the NCs group. We found only moderate evidence that the former, a 

proposed marker of early neurodegeneration, is associated with the physiology of superior 

memory ability (ROC AUC = 0.71, 95% CI: 0.59 - 0.82) (Supplemental Table 4). The 

combination of the 10 lipid panel, putatively representing early neurodegeneration, with the 12 

metabolite panel, putatively representing memory function, into a 21 metabolite panel (with 

C16:1-OH overlapped), however, accurately classified the SN and the NCs groups (ROC AUC = 

1.0, 95%CI: 1.0 - 1.0), the aMCI/AD and NCo groups (ROC AUC = 1.0 95% CI = 1.0 – 1.0), and 

the ConverterpreAD  and NCo groups (ROC AUC = 0.99, 95% CI: 0.97 - 1.0) (Supplemental 

Table 4). 

3.5  Twelve metabolite panel specific to memory ability 

Finally, we developed a plasma 12-metabolite index, using the standardized coefficient 

(Beta) of each metabolite in the SN (n=41) vs NCs (n=41) logistic regression classifier model 

(Table 2) to weigh the natural log transformed metabolite abundance and create a single 12 

metabolite-index for all participants in the study (SN n= 41, aMC/AD n=74, and combined NC 

n=109) (Figure. 2A). Linear regression models of the 12-metabolite index and the five cognitive 

domains (Zatt, Zexe, Zlan, Zmem, Zvis) controlling for group (SN, aMCI/AD, NC) showed a 

significant relationship between the 12-metabolite index and memory composite Z-scores in the 

aMCI/AD, NC (combined NCs
 and NCo), and SN groups (Beta = 0.09, t = 2.30, p = 0.022) when 

adjusting for group (Figure. 2B). Importantly, the 12-metabolite index was not associated with 

other cognitive domains supporting its specificity to memory processes (Supplemental Table 5).  
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4. Discussion  

Here we report a set of plasma-derived metabolites that characterize a state of successful 

cognitive aging in a limited clinical cohort. The strong association of these metabolites 

(phospholipids, acylcarnitines, amino acids, and biogenic amines) with the composite memory 

score, and the specificity for memory, support the use of this molecular-phenotyping approach in 

the discovery of biologically relevant pathways associated with successful cognitive aging. 

While the precise molecular network of interaction for these 12 metabolites remains to be 

elucidated, their apparent connection to superior memory performance is provocative (Figure 3). 

We found lower levels of L-arginine in our participants with superior memory. A recent plasma 

metabolomic study showed elevated L-arginine levels in stable MCI subjects, as well as in MCI 

subjects who converted to AD when compared to controls (Graham et al., 2015). In addition, 

other groups have shown evidence of altered transcript and protein levels of arginase, together 

with reduced ornithine decarboxylase and polyamine levels in AD brain tissue, suggesting a link 

between arginine metabolism and AD (Morrison et al., 1995, Morrison et al., 1998, Colton et al., 

2006, Hansmannel et al., 2010). In contrast, reduction of L-arginine in our SN group, while yet 

to be fully dissected, might reflect rapid turnover of the substrate to form L-citrulline through 

either the urea cycle or the nitric oxide (NO) cycle(Liu et al., 2014). Up-regulation of the urea 

cycle decreases nitrosative stress, which is consistent with the reduced levels of nitrotyrosine 

noted in our SN group. Further, reduction of nitrotyrosine and histamine in our SN participants 

may reflect a state of lower overall oxidative stress and systemic inflammation (Tohgi et al., 

1999, Alvarez, 2009) in this model of successful cognitive aging.  
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These metabolomic results reveal a unique set of potential physiological markers for a 

diverse range of memory abilities (aMCI/AD < preclinical AD < normal < SN) and implicate 

several memory-related physiological processes. The upregulation of aspartate, a potent N-

methyl-D-aspartate receptor agonist may support synaptic plasticity and superior memory 

(Shimizu et al., 2000) characterizing SN participants. In addition, putatively increased 

bioavailability of NO in SN participants may mechanistically enhance long term 

potentiation(Schuman and Madison, 1991) and promote synaptic plasticity(Nikonenko et al., 

2013, Chakroborty et al., 2015) and cognitive reserve(Lores-Arnaiz et al., 2006). In the aMCI 

and AD participants however, dysregulation of these memory-relevant processes may contribute 

to the characteristic memory loss of these conditions. We also found evidence of these metabolic 

disruptions in the preclinical state of AD where, by definition, memory ability is not impaired, 

but the antecedent pathobiology of future memory loss may be present. This observation in 

particular suggests metabolic disruption occurs and can be detected early in the disease process 

and may be related to the emergence of tau pathology and neurodegeneration characterizing 

stage 2 preclinical AD(Sperling et al., 2011). We find support for this notion in the strong 

classification performance of the combined memory and neurodegeneration 21-metabolite model 

for both aMCI/AD and preclinical AD; a model which may more comprehensively reflect AD 

pathobiology. In the cognitively successful SN brain, efficient information transfer in memory 

and executive brain networks(LePort et al., 2012) may reflect successful adjustments to age-

related neurophysiological decline(Grady, 2008). In contrast, the memory impairment associated 

with the AD brain may reflect inadequate or failed compensation to cumulative pathobiologic 

events(Mesulam, 2000). 
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These results may have important implications for promoting successful cognitive aging, 

which can lead to improved functional independence and quality of life for millions of older 

adults, however, there are several limitations to the inferences we can draw from this study. First, 

like other peripheral blood biomarker studies of brain-related conditions, the link between central 

and peripheral metabolomic reflections is likely to be indirect. This is less of a problem when 

investigating animal models, where central and peripheral biochemistry can be directly 

measured, or when using matrices such as human cerebrospinal fluid, which is in direct contact 

with the brain parenchyma. Although certain explanations (Fiandaca et al., 2015) provide 

plausible support for direct peripheral metabolomic manifestations resulting from an active 

central brain process, the direct proof for such postulates is currently lacking.  

Second, as with many other investigations utilizing peripheral biosignatures of brain-

related conditions, replication/validation of our results is required.  To do so, investigators must 

not only utilize similar study designs and analytic methods, but also investigate similar subject 

groups (demographics) and matrices (plasma, and not serum), as in our study. In addition, our 

small cohort of analyzed subjects makes generalization of our results quite challenging.  Future 

analyses of larger demographically different subject cohorts are necessary to investigate the 

applicability of our results beyond our limited group. Expanded studies, using similar 

metabolomic methods and comparably defined subjects, provide opportunities for novel 

metabolomic discovery that may support, critique, or go beyond our current observations.  

Third, we do not know the impact of plasma sample storage duration on measurement of 

these metabolites. The ConverterpreAD samples had been stored for significantly longer duration 

(approximately 23 months longer) than the other groups and we do not know for sure if there 

was any effect on sample quality and ultimately relative metabolite abundances due to this. 
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Plasma sample quality very likely deteriorates over extended storage (>10 years) even at -80C, 

but recent work suggests that short storage periods of up  to 2.5 years  has negligible effects on 

metabolite measurements (Pinto et al., 2014). Furthermore, we believe that differences in sample 

storage duration did not significantly affect the metabolomic results here because the same 

control group (NCO) was used as comparison for both the aMCI/ AD and ConverterpreAD groups. 

The NCO and aMCI/AD samples had very similar mean storage durations. If sample storage 

duration significantly influences metabolite abundance we would expect to have seen differences 

in these comparisons, but the ROC AUC results for both groups were nearly identical for the 12-

metabolite (aMCI/AD vs NCO = 1.0, ConverterpreAD vs NCO = 0.97) and the 21-metabolite panels 

(aMCI/AD vs NCO = 1.0, ConverterpreAD vs NCO = 0.99) suggesting that storage duration, at least 

the 23 month difference in our study, had minimal effect. Certainly, greater storage duration 

(e.g., 10 or more years) may have a much greater impact on sample quality and metabolite 

measurements. 

Finally, there is a lack of consensus on how to define the construct of successful 

cognitive aging and we recognize that our operational definition focusing on the singular feature 

of memory ability may be limited. We chose superior memory as an exemplar of successful 

cognitive aging in order to 1) discretely operationalize the construct, 2) recognize the relative 

complexity of memory above other cognitive abilities (e.g., attention), and 3) to provide a 

common dimension for comparison with a more commonly used model of unsuccessful 

cognitive aging, AD where memory impairment is the cardinal feature.  We do not believe that 

superior memory alone defines the entirety of successful aging and recognize that other attempts 

at operationalizing are equally valid and may provide additional useful insights into aging 

success. We also recognize that interventions designed to directly improve memory or mitigate 
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memory decline may not lead to beneficial effects on functional capacity or quality of life in 

older adults.  However, we anticipate that an improved understanding of both health- and 

disease-related metabolomic characteristics may ultimately lead to preventative strategies that 

not only maximize general health and longevity, but also reduce likelihood of age-related 

cognitive decline.   
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Figure Legends 

 

Figure. 1. Results of ROC analysis using the 12-metabolite panel. This figure shows plots 

of SN vs NCs ROC analysis using the 12-metabolite panel in targeted discovery (a) and 

validation (b) phases and application of the 12-metabolite panel to the external aMCI/AD (c) 

and ConverterpreAD (d) samples. 95% confidence intervals shaded in blue. Crosshair on ROC 

plot represents optimal ROC threshold. SN = Supernormal, NCs
 = Normal control for 

supernormal sample; aMCI/AD = amnestic mild cognitive impairment and Alzheimer’s 

disease; ConverterpreAD = Preclinical AD; NCo
 = Normal control for ConverterpreAD and 

aMCI/AD samples. 

Figure. 2. 12-metabolite index and relationship with memory performance. This figure 

shows the derived 12-metabolite index for the three groups (SN, NC, and aMCI/AD) (a). Box-

plot for index values between groups. Using multinomial logistic regression, the 12-metabolite 

index significantly differentiated the SN, NC, and aMCI/AD groups (all p < .013).  The 

relationship between the 12-metabolite index and memory composite z-score is shown for each 

group of participants in the study (b). Zmem = Memory composite score; SN = Supernormal; NC 

= Normal control (combined NCs
 and NCo); aMCI/AD = amnestic mild cognitive impairment 

and Alzheimer’s disease. Note. ** p < .01; *** p < .001. 

Figure. 3. Biological pathways implicated in superior memory performance. This diagram shows 

the pathways implicated by the metabolomic results of the SN vs NCs comparisons.  The bold 

orange boxes show the metabolites which were significantly altered in the analysis and the 

arrows associated with the metabolite indicate the level of the metabolite in the SN group 

relative to the NCS group. For the aMCI/AD vs NCO comparison, the arrows would be reversed 

indicating the opposite relationship between the levels of each metabolite relative to the NCO.
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Tables 

Table 1. Demographic Details 
 
Group 

 
n 

Mean Age 
years (SD) 

Number 
Male (%) 

 
% ApoE4 

Mean BMI  
(SD) 

Mean Education 
years (SD) 

Mean  
MMSE (SD) 

        
SN 41 83.22 (3.37) 20 (48.8) 5/41 (12%) 26.55 (4.94) 16.41 (2.68) 29.05 (1.07) 

Discovery 26 82.69 (3.50) 13 (50.0) 0/26 (0%) 26.10 (4.61) 15.92 (2.37) 29.15 (1.08) 
Validation 15 84.13 (3.04) 7 (46.7) 5/15 (33%) 27.34 (5.54) 17.27 (3.06) 28.87 (1.06) 

        
NCS 41 83.29 (3.82) 20 (48.8) 4/41 (9%) 25.53 (3.21) 16.24 (2.47) 28.66 (1.37) 

Discovery 26 82.88 (3.34) 18 (69.2) 4/26 (15%) 25.08 (2.91) 16.50 (2.63) 28.68 (1.29) 
Validation 15 84.50 (4.42) 2 (14.3) 0/15 (0%) 26.29 (3.63) 15.86 (2.25) 28.62 (1.27) 

        
aMCI/AD 74 81.93 (4.37) 20 (27.0) 24/74 (32%) 25.93 (3.97) 15.36 (2.45) 26.33 (2.77) 
ConverterpreAD

 #  28 80.21 (4.02) 12 (42.9) 5/28 (17%) 26.51 (4.54) 15.04 (2.74) 28.61 (2.49) 
NCO 68 81.69 (3.40) 26 (38.2) 16/68 (23%) 27.03 (4.77) 15.43 (2.40) 28.19 (3.75) 

Note: SN = Supernormal; NCs
 = Normal control for supernormal sample; aMCI/AD = amnestic mild cognitive 

impairment and Alzheimer’s disease group; ConverterpreAD = Preclinical AD; NCo
 = Normal control for ConverterpreAD 

and aMCI/AD sample. The aMCI/AD, ConverterpreAD, and NCo participants were included in our previous 
study(Mapstone et al., 2014). MMSE = Mini Mental State Examination. BMI = Body Mass Index. # Baseline data for 
subjects who converted to aMCI/AD within 2.1 years. 
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Table 2. Natural Log Transformed Data of the Discovery and Internal Validation Samples for the 12-
Metabolite Panel. 

 
Discovery sample Validation sample Total sample 

Metabolite Group Mean SD 
t test* 

(p) 
Mean SD 

t test* 
(p) 

Beta, SE (p) # 

Arginine 
SN 4.16 0.37 -0.84 

(.41) 
4.34 0.51 -1.22 

(.23) 
-0.17, 0.96 

(.10) NCs
 4.25 0.40 4.53 0.32 

Hydroxyhedadecadienylcarnitine 
(C16:2-OH) 

SN -4.68 0.24 -1.02 
(.32) 

-4.68 0.23 -1.74 
(.10) 

-0.25, 2.49 
(.01) NCs

 -4.61 0.24 -4.56 0.15 

3-Hydroxypalmitoleylcarnitine 
(C16:1-OH) 

SN -4.59 0.25 -0.38 
(.70) 

-4.62 0.25 -2.17 
(.04) 

-0.05, 2.08 
(.90) NCs

 -4.57 0.18 -4.43 0.20 

Lyso PC a C17:0 
SN 0.84 0.27 -1.02 

(.31) 
0.78 0.27 -1.31 

(.20) 
-0.34, 1.70 

(.004) NCs
 0.91 0.27 0.93 0.37 

Asparagine 
SN 4.19 0.22 -1.03 

(.31) 
4.20 0.18 -2.19 

(.01) 
-0.67, 0.88 

(.001) NCs
 4.26 0.22 4.36 0.21 

Lyso PC a C28:1 
SN -0.81 0.29 1.77 

(.08) 
-0.75 0.33 -0.90 

(.38) 
-0.01, 1.42 

(.99) NCs
 -0.93 0.20 -0.64 0.28 

Nitrotyrosine 
SN -0.30 0.18 0.14 

(.89) 
-0.18 0.13 2.86 

(.007) 
0.94, 1.42 

(.009) NCs
 -0.31 0.26 -0.52 0.42 

Valerylcarnitine (C5) 
SN -1.99 0.49 0.90 

(.37) 
-2.15 0.34 -0.32 

(.75) 
0.10, 0.78 

(.08) NCs
 -2.12 0.50 -2.11 0.39 

Histamine 
SN -0.39 2.30 -0.29 

(.78) 
-0.59 2.17 0.17 

(.87) 
0.03, 0.13 

(.81) NCs
 -0.19 2.65 -0.76 3.41 

PC aa C38:5 
SN 4.16 0.30 2.00 

(.05) 
4.14 0.28 0.23 

(.82) 
0.41, 1.87 

(.001) NCs
 3.98 0.32 4.12 0.28 

Aspartate 
SN 3.04 0.48 2.34 

(.02) 
3.02 0.42 -1.42 

(.18) 
0.35, 0.88 

(.15) NCs
 2.73 0.48 3.19 0.23 

Citrulline 
SN 4.15 0.32 1.28 

(.21) 
4.10 0.26 -1.72 

(.10) 
0.80, 1.91 

(.009) NCs
 4.04 0.27 4.28 0.28 

Note: SN = Supernormal; NCs
 = Normal control for supernormal sample; *Significant difference between the 
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groups for individual metabolites is not required for inclusion in the logistic regression classifier model. # Beta 
weights are from the overall classifier model with SN vs. NCs as the outcome and 12 metabolites collectively 
as the predictors for the Discovery and Validation samples. Negative Beta weights indicate lower abundance 
of the metabolite in the SN group compared to the NCs group, while positive Beta weights reflect greater 
abundance in the SN group.  
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Highlights 

• We examined plasma metabolomics of older adults with superior memory  

• 12 metabolites were differentially abundant in these subjects compared to controls 

• These 12 metabolites were abundant in the opposite direction in Alzheimer’s disease 

• The metabolites are involved in inflammation, oxidative stress, and NO availability 

• Modulation of these pathways may promote successful cognitive aging trajectories  
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