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CI = [0.190, 4.073], p = 0.031) in 65 participants 
(mean age = 74.7, 32 female) with amnestic mild cog-
nitive impairment (aMCI). Follow-up data from 55 of 
these individuals (mean age = 73.6, 22 females) was 
used to show reliability of this relationship (β = 0.271, 
SE = 0.971, CI = [0.033, 2.630], p = 0.047), and a 
second sample (40 participants with aMCI/healthy 
cognition, mean age = 72.7, 24 females) showed that 
the canonical vector biomarker generalized to visual 
working memory (β = 0.36, SE = 0.136, CI = [0.023, 
0.574], p = 0.037), but not inhibition task RMSSD 
data (β = 0.08, SE = 1.486, CI = [− 0.354, 0.657], 
p = 0.685). This canonical vector may represent a 
biomarker of autonomic regulation that explains how 
some older adults maintain internal LOC-Cognition 
as dementia progresses. Future work should further 
test the causality of this relationship and the modifi-
ability of this biomarker.

Keywords Locus of control · Dementia · LOC-
Cognition · Autonomic flexibility

Introduction

Locus of control (LOC) describes a personal-
ity trait based on whether an individual thinks that 
they themselves (internal LOC) or external factors 
(external LOC) have more influence on their lives. 
Internal LOC has been theorized to enable bet-
ter coping mechanisms and adjustment to chronic 
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diseases [34]. In addition to reflecting a personality 
trait, LOC has been shown to vary by domain, for 
example, the extent to which someone believes they 
are in control of their health (LOC-Health) or intel-
lectual capacities (LOC-Cognition). Lachman [16] 
found that these domain-specific LOC measures show 
age-related differences and are stronger predictors 
of behavioral outcomes in older adults than overall 
LOC. Critically, our recent studies suggest that the 
early stages of dementia (specifically, mild cognitive 
impairment,MCI) are associated with a shift in LOC-
Cognition, with a decrease in internal LOC-Cognition 
and an increase in external LOC-Cognition [32]. This 
is in line with research from other disorders showing 
that worsening depression symptoms predict a shift 
from internal to external LOC [15]. Additionally, one 
study suggested that internal LOC might be protec-
tive against cognitive decline and brain aging in older 
adults [31], and maintaining a belief that you are in 
control of your own cognition may be an essential 
driver of adherence to interventions in older adults 
at risk for dementia [44]. Not only do these findings 
imply that LOC-Cognition may be an indicator of 
dementia progression, but LOC-Cognition may also 
act as a feed-forward mechanism for the progression 
of dementia, leading to less resilience as individuals’ 
cognition declines alongside their belief that they are 
in control of their cognition.

Identifying potentially modifiable mechanisms that 
underpin internal LOC-Cognition among older adults 
at risk for dementia is fundamental for develop-
ing effective interventions that can promote internal 
LOC-Cognition to potentially improve both adher-
ence to interventions and general cognitive outcomes. 
Research has shown that individuals with strong 
internal LOC show altered stress response or bet-
ter adaptation capacity [22, 31]. Of note, autonomic 
nervous system (ANS) regulation serves as the pri-
mary indicator of stress response or adaptation capac-
ity [40]. Cumulative work, including ours, has shown 
that ANS regulation, and selected brain networks 
that are tightly interwoven via bidirectional commu-
nication, support “autonomic flexibility”, regulating 
physiological and behavioral responses to threaten-
ing or challenging stimuli and influencing health 
[29]. Particularly, impaired vagal control capacity 
(an aspect of autonomic flexibility involving control 
over the parasympathetic, or “rest-and-digest” branch, 
of the ANS) at rest and during selected cognitively 

challenging tasks (e.g., working memory tasks) is 
related to neurodegeneration and cognitive deficits 
in individuals at risk for or with dementia [17, 20, 
25]. Together, these findings suggest that the capac-
ity to control autonomic flexibility via vagal nerve 
systems may be a mechanism explaining differences 
in internal LOC-Cognition in older adults at risk for 
dementia.

In this study, we tested a novel hypothesis that 
patterns of autonomic regulation captured via neu-
ral and peripheral physiological measures would 
reflect an older person’s internal LOC-Cognition. 
We assessed the vagal control of ANS activities (via 
root mean square of successive differences; RMSSD) 
of older adults with amnestic mild cognitive impair-
ment (aMCI) during working memory tasks. Working 
memory is a critical component of cognitive decline 
during dementia that can be assessed in a single, short 
session, and has been shown to elicit reliable auto-
nomic responses in older adults [28]. While resting-
state HRV measures can also reflect parasympathetic 
adaptation capacity, there is evidence that there may 
be dissociable autonomic responses to specific envi-
ronmental/cognitive stressors that relate to individual 
differences in participant traits [21, 39]. Given our 
focus on a population at risk for cognitive decline, 
particularly in executive functions such as working 
memory, and resilience markers related specifically to 
their cognition (LOC-Cognition), we chose to meas-
ure HRV data during a cognitive stressor to focus 
on autonomic signals that may specifically reflect 
vagal adaptation capacity related to at risk cognitive 
processes. We used canonical correlation analysis 
(CCA), which maximizes the linear correspondence 
between two sets of variables, to obtain correlated 
features from RMSSD time series and brain resting-
state functional connectivity (FC) derived from fMRI 
data (see Fig. 1). Resting-state FC is a trait measure 
of brain function that has shown associations with 
HRV measures [7, 8]. By constraining the CCA using 
resting-state FC, we aimed to identify linear corre-
spondences between FC and HRV measures to iso-
late aspects of autonomic regulation that are shared 
between the peripheral and central nervous systems. 
Given that dementia pathology predominantly affects 
the brain, we believe that these shared signals are crit-
ical for understanding individual differences in auto-
nomic regulation in dementia. The identified canoni-
cal vector reflected a potential biomarker reflecting 
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autonomic regulation, and was significantly associ-
ated with internal LOC-Cognition at two separate 
time points within an aging sample at risk for demen-
tia, as well as in a separate validation sample consist-
ing both cognitively healthy older adults and those 
with aMCI.

Methods

Design overview

Figure  1 displays an overview of the study proce-
dure. Briefly, we used a sample of 65 older adults 
(mean age = 74.72 ± 7.64) from the “CogTE” 
study [19] as the original sample set  (SampleO) 
where we collected measures of resting-state fMRI 

(rsfMRI), working memory-based task electrocar-
diogram (ECG), and LOC-Cognition. In  SampleO, 
we extracted RMSSD-based canonical variables 
(RMSSD-betweenFC-varO and RMSSD-withinFC-
varO) based on CCA of RMSSD and FC (separat-
ing averages of all within-network connections for 
withinFC and all between-network connections for 
between FC) and analyzed the relationship between 
autonomic flexibility and LOC-Cognition (see 
below for more details). As part of this analysis, 
CCA on  SampleO also generates canonical vec-
tors (RMSSD-betweenFC-vecO and RMSSD-with-
inFC-vecO), which reflect a series of weights that 
can be applied to other RMSSD data. We used two 
samples—the 6-week follow-up data of the origi-
nal sample set  (SampleR) and a sample set of 40 
older adults (mean age = 72.83 ± 10.10)  (SampleV, 

Fig. 1  Overview of the design and analytical flow throughout 
the original, replication and validation samples. We generated 
two sets of RMSSD based on CCA of within-networks FCs, as 

well as CCA of between-network FCs. Note: *we also included 
an inhibition task as comparison. “Weights from CCA” were 
all from CCA in  SampleO
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ESB study [32])—for replication and validation of 
canonical vectors that showed a significant rela-
tionship to LOC-Cognition in  SampleO. We directly 
developed RMSSD canonical variables (RMSSD-
betweenFC-varR and RMSSD-betweenFC-varV) 
using the canonical vector (RMSSD-betweenFC-
vecO) identified as significantly related to LOC-
Cognition in in  SampleO (rsfMRI data were not 
included in the replication samples). These vari-
ables were used to replicate and validate the rela-
tionship between RMSSD-betweenFC-varO and 
LOC-CognitionO using RMSSD canonical vari-
ables (RMSSD-betweenFC-varR and RMSSD-
betweenFC-varV) and LOC-Cognition scores 
(LOC-CognitionR and LOC-CognitionV) from each 
sample.

Participants

Sample from CogTE study

Older adults with aMCI were recruited from uni-
versity affiliated clinics. Description of the inclu-
sion and exclusion criteria is available from the 
original report [19]. Out of the original 84 partici-
pants, 19 were excluded from the analyses due to 
the incomplete ECG recordings, leaving 65 par-
ticipants as  SampleO. The original CogTE study 
included intervention and control groups.  SampleO 
was baseline data from both groups. Replication 
 sampleR was from the 6-week follow-up data (post-
intervention) from both groups, further excluding 
10 participants missing valid RMSSD data.

Sample from ESB study

Older adults with aMCI or age-, sex-, and educa-
tion-matched healthy cognition (HC) were recruited 
from local community or university affiliated clinics. 
Description of the inclusion and exclusion criteria is 
available from the original report [32]. We will refer 
to this validation sample as  SampleV. Description of 
all samples is available in Table 1.

Measures

LOC-Cognition

As in previous studies in our lab [32, 33], LOC-
Cognition was assessed with the Personality in Intel-
lectual Aging Contexts (PIC) Inventory Control 
Scales-Short Form [16]. The scale includes three 
12-item subscales: internal (reflecting internal LOC-
Cognition), chance, and powerful others. Internal 
LOC-Cognition assesses perceived control over one’s 
intellectual competence. The other two subscales 
assess the perception that environment (chance) or 
other individuals (powerful others) are responsible for 
one’s cognitive capabilities. Responses were made on 
a 6-point scale, from 1 (strongly agree) to 6 (strongly 
disagree). Items of a subscale were averaged so that 
higher scores in all subscales indicated higher lev-
els of LOC-Cognition. In the following analyses, we 
focused on internal LOC,Cronbach’s alpha was 0.75 
for  SampleO, 0.67 for  SampleR, and 0.83 for  SampleV. 
As a comparison to internal LOC-Cognition, we used 
averaged scores of chance and powerful others to 
reflect external LOC-Cognition [32, 47].

Table 1  Characteristics of original, replication, and validation samples

aMCI amnesic mild cognitive impairment, SD standard deviation, n number of participants, MoCA Montreal cognitive assessment, 
LOC locus of control (cognition)

CogTE study ESB study  (SampleV)

SampleO aMCI (n = 65) SampleR aMCI (n = 55) Total (n = 40) HC (n = 22) aMCI (n = 18)

Age, mean (SD) 74.72 (7.64) 73.65 (7.08) 72.67 (10.06) 71.23 (9.61) 74.44 (10.60)
Years of education, mean (SD) 16.44 (2.44) 16.30 (2.50) 15.52 (2.64) 15.64 (2.50) 15.39 (2.87)
Male, n (%) 33 (50.7) 33 (60) 16 (40) 8 (36.4) 8 (44.4)
MoCA, mean (SD) 23.92 (2.59) 24.21 (2.88) 25.23 (2.76) 26.14 (2.67) 24.17 (2.55)
Internal LOC, mean (SD) 5.09 (0.65) 5.19 (0.58) 5.01 (0.81) 5.33 (0.52) 4.64 (0.96)
External LOC, mean (SD) 2.42 (0.63) 2.35 (0.61) 2.47 (0.87) 2.09 (0.72) 2.95 (0.82)



GeroScience 

1 3
Vol.: (0123456789)

Brain network FC measures

Data acquisition

Imaging data were collected using a research-ded-
icated 3  T Siemens TrioTIM scanner (Erlangen, 
Germany) with a 32-channel head coil in  SampleO. 
Each magnetic resonance session began with a scout 
image, followed by an MPRAGE scan (TI = 1100 ms, 
TE/TR = 3.44  ms/2530  ms, 1-mm isotropic resolu-
tion, 256 × 256 matrix, FA = 7, 1-mm slice thick-
ness, 192 slices), which provides high-resolution 
structural-weighted anatomical images for image-reg-
istration purposes. A 2D axial fast gradient-recalled 
echo pulse sequence was used to generate field maps 
to correct for field inhomogeneity distortions in 
echo-planar imaging sequences. Blood-oxygen-level-
dependent (BOLD) functional data were collected 
using a gradient echo-planar imaging sequence (TE/
TR = 30  ms/2500  ms, 4-mm isotropic resolution, 
64 × 64 matrix, FA = 90, 4-mm slice thickness, 37 
contiguous axial slices). Participants were instructed 
to relax with their eyes open without falling asleep. 
An in-scanner camera was used to ensure compliance.

Data preprocessing

Resting-state fMRI data were preprocessed using 
scripts from a pipeline developed in our lab [6]. 
The script used for preprocessing is available at: 
https:// github. com/ sbci- brain/ SBCI_ Pipel ine/ blob/ 
master/ integ rated_ pipel ine/ prepr oc_ step5_ fmri. sh, 
and was carried out using FreeSurfer. Preprocessing 
included these steps: motion correction, slice-time 
correction, intensity normalization, and co-regis-
tration and normalization to the cortical surface 
(fsaverage). Additionally, motion, the first five com-
ponents of the signal from the ventricular cerebro-
spinal fluid and white matter, the global signal, and 
a linear trend were regressed out alongside tempo-
ral filtering (0.009–0.08 Hz). Images were spatially 
smoothed using a kernel with 5 mm FWHM. Images 
were projected onto the gray-white matter bound-
ary, and time series were extracted and correlated 
to generate a functional connectivity matrix (https:// 
github. com/ sbci- brain/ SBCI_ Pipel ine/ blob/ mas-
ter/ integ rated_ pipel ine/ sbci_ step6_ funct ional. sh). 
Edges were averaged both within and between the 7 
large-scale cortical networks (visual, somatomotor, 

dorsal attention, ventral attention, limbic, frontopa-
rietal, and default mode) and identified by Yeo and 
Krienen et al. [46] to give 7 average within-network 
functional connectivity and 21 between-network 
functional connectivity values per participant.

RMSSD measures

Data acquisition

ECG data in both CogTE and ESB studies were 
acquired with Mindware and BioLab software. 
Heart rate variability (HRV) was monitored con-
tinuously using a standard lead-II electrode con-
figuration, while participants performed an auditory 
working memory (i.e., auditory consonant trigrams) 
task in CogTE, or Stroop (inhibition) and Dual 
1-back (visual working memory) tasks in a random 
order across participants in ESB. The same protocol 
was used to collect ECG data for all three samples. 
Across both studies and subjects, the same environ-
mental control was applied, including a fixed time 
window and room temperature for conducting ECG 
recording, and restricting from beta-blocker and 
caffeine intake on the day before ECG recording.

Data preprocessing

We filtered the ECG raw signal using a bandpass 
Butterworth filter of 4th order in the range [0.1, 
100] Hz and preprocessed RMSSD data using the 
Heartpy library of Python [43]. The frequency range 
is recommended by the American Heart Association 
[1]. RMSSD, a vagal regulation capacity measure 
from HRV, was used as the outcome measure. The 
advantage of using RMSSD, compared to HF-HRV, 
is that RMSSD is less affected by the respiration 
frequency. Across all ECG data, we used the first 
8-min data. The ECG data was processed in seg-
ments of 60 s with a 30-s sliding window. From 15 
segments generated, we extracted the RMSSD and 
calculated the natural log. If there were missing val-
ues in four segments or less, we used interpolation 
(mean of the previous and the following variables). 
Of note, we only included participants with at least 
11/15 segments across samples.

https://github.com/sbci-brain/SBCI_Pipeline/blob/master/integrated_pipeline/preproc_step5_fmri.sh
https://github.com/sbci-brain/SBCI_Pipeline/blob/master/integrated_pipeline/preproc_step5_fmri.sh
https://github.com/sbci-brain/SBCI_Pipeline/blob/master/integrated_pipeline/sbci_step6_functional.sh
https://github.com/sbci-brain/SBCI_Pipeline/blob/master/integrated_pipeline/sbci_step6_functional.sh
https://github.com/sbci-brain/SBCI_Pipeline/blob/master/integrated_pipeline/sbci_step6_functional.sh
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Data analysis

CCA  is a statistical method that identifies and quan-
tifies the associations between two linearly com-
bined sets of variables X and Y (without assuming 
any particular form of precedence or directionality) 
[14]. The main goal is to find coefficient vectors (or 
canonical vectors) a and b, such that the correlation 
( � ) between the sets is as large as possible:

where X and Y come from the same number of obser-
vations n and have dimensions n x p and n x q, respec-
tively, a ϵ  Rp, and b ϵ  Rq. With this, we obtained the 
canonical weights for the canonical variable explain-
ing the highest correlation between the two sets of 
variables.

We examined CCA between RMSSD segments 
and FC measures in  SampleO. To understand 
whether within- or between-network FC played dif-
ferent roles in adaptation capacity related to inter-
nal LOC-Cognition, we separated FC into within-
network features (n = 7) and between-network 
features (n = 21) and ran two sets of CCA. CCA 
was only performed on the data from  SampleO; 
to generate the RMSSD canonical variables for 
the replication and validation data (RMSSD-
betweenFC-varR and RMSSD-betweenFC-varV), 
we used  SampleO’s CCA weights/canonical vector 
(RMSSD-betweenFC-vecO, representing a series 
of weights for each RMSSD segment). We did 
not use RMSSD-withinFC-vecO in later canonical 
variable calculation due to the insignificant find-
ings between RMSSD-withinFC-varO and inter-
nal LOC-cognition (see results). To obtain val-
ues of the corresponding canonical variable (cvn), 
which is RMSSD-betweenFC-varR for  SampleR 
and RMSSD-betweenFC-varV for  SampleV, respec-
tively), we used the following formula described 
earlier [45]:

where a is RMSSD-betweenFC-vecO, X is the matrix 
containing RMSSD segment values, n is the number 
of participants according to the sample used (65, 55, 
or 40), and s is the number of RMSSD segments (15). 
CCA was conducted in R with the cancor() function 
of CCA package.

(1)� = max
a,bcorr(aX, bY)

(2)cv
n
=
∑s

k=1
a
k
X
i,k ∀i = 1,… n

Linear regression

To determine the correlation between LOC-Cogni-
tion and RMSSD canonical variables, we used linear 
regression (stats package) in R.

Using  SampleO, we calculated the correlation 
between RMSSD canonical variables (RMSSD-
betweenFC-varO based on RMSSD-betweenFC-vecO 
and RMSSD-withinFC-varO based on RMSSD-with-
inFC-vecO, respectively) and internal LOC-Cogni-
tionO, with alpha set at 0.05. These analyses were also 
performed with external LOC-Cognition, for compar-
ison purposes.

To assess the reproducibility of our findings, 
we performed two additional sets of linear regres-
sion: (1) using  SampleR, we examined the relation-
ship between RMSSD-betweenFC-varR and internal 
LOC-CognitionR.  SampleR consisted both groups’ 
post-intervention data (from CogTE study); therefore, 
we controlled for the group to remove intervention 
effect confounds; (2) using  SampleV, we examined 
the relationship between RMSSD-betweenFC-varV 
and internal LOC-CognitionV. For  SampleV, we used 
RMSSD data during a visual working memory task 
and an inhibition task to test the generalizability of 
RMSSD-betweenFC-vecO. We controlled for MOCA 
as  SampleV included both HC and aMCI.

Results

Canonical correlation analysis

First, we attempted to extract an HRV biomarker 
reflecting adaptation capacity during an audi-
tory working memory task by performing a CCA 
on the RMSSD time series constrained by either 
within- or between-network FC. CCA on  SampleO 
identified a shared component characterized by a 
correlation of 86.9% and 66.23% between features 
from the RMSSD time series and between- and 
within-Yeo network FC, respectively. Figure 2A and 
B display the weights of RMSSD segments and 
brain networks contributing to the correlation. 
The CCA weights in both RMSSD canonical vec-
tors (RMSSD-betweenFC-vecO and RMSSD-with-
inFC-vecO) are highest for segments 5, 6, 12, 13, 
14, and 15 in both scenarios, meaning these seg-
ments contribute the most to the canonical variables 
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(RMSSD-betweenFC-varO and RMSSD-withinFC-
varO). A detailed behavior of the raw RMSSD at 
each segment is presented in Fig.  2C, along with 
the absolute value of CCA weights. The network 
contributing most to the withinFC CCA weights in 
canonical covariate 1 (CC1) is the ventral attention 
network, and the betweenFC CC1 weights are high-
est in for connections between the somatomotor and 

visual networks, followed by somatomotor-fron-
toparietal and dorsal attention-default mode net-
work FC (see Fig. 2D). Note that we are consider-
ing the absolute value to determine the contribution 
of the segment or brain network; nevertheless, we 
use the original weight for calculating the canonical 
variable of each feature.

Fig. 2  CCA results of RMSSD and brain network FC meas-
ures from  SampleO. A Canonical correlation structure of 
RMSSD segments and between-network FCs  for CC1-
RMSSD-betweenFC-varO. B Canonical correlation structure of 
RMSSD and within-network FCs for CC1-RMSSD-withinFC-
varO. C Raw values (Mean ±1SE), upper for  SampleO RMSSD 
segments,  and absolute CCA weights/canonical vector for 
 SampleO RMSSD segment  contributions to CC1-RMSSD-
betweenFC-varO, bottom. D Absolute CCA weights/canonical 
vectors for between-network FCs (the colors are arbitrary) con-

tributions to CC1-RMSSD-betweenFC-varO. Note. In A and 
B,  the top 3 FC and top 5 RMSSD values in terms of contri-
bution are shown with dotted lines, and  the width of the line 
in A, B, and D represents the contribution of that particular 
connection or segment to CC1-RMSSD-betweenFC-varO  or 
CC1-RMSSD-withinFC-varO. ln RMSSD, natural log-trans-
formed root mean square of successive differences. V, visual; 
S, somatomotor; DA, dorsal attention; VA, ventral attention; L, 
limbic; FP, frontoparietal; D, default.
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Linear regression

To assess the relationship between the potential 
autonomic flexibility biomarkers and participants’ 
internal LOC-Cognition, we performed linear regres-
sion analyses. RMSSD-betweenFC-varO (β = 0.266, 
SE = 0.971, CI = [0.190, 4.073], p = 0.031, Fig.  3A), 
but not RMSSD-witihnFC-varO (β =  − 0.131, 
SE = 0.999, CI = [− 3.046, 0.946], p = 0.297, Fig. 3B), 
was significantly associated with the extent to which 
a participant believed they were in control of their 
own cognition. For comparison, we also performed 
linear regression analyses to test for the relation-
ship between the canonical variables and external 
LOC and found no significant relationships for either 
RMSSD-betweenFC-varO (β = 0.095, SE = 1.003, 
CI = [− 1.237, 2.772], p = 0.447) or RMSSD-with-
inFC-varO (β =  − 0.004, SE = 1.008, CI = [− 2.047, 

1.980], p = 0.973). Given the significant relationship 
between RMSSD-betweenFC-varO and internal LOC-
CognitionO, we performed follow-up analyses to test 
the reliability and validity of RMSSD-betweenFC-
vecO by applying it to RMSSD data from replication 
and validation samples.

Reliability

We applied RMSSD-betweenFC-vecO to RMSSD 
data collected during the same auditory working 
memory task post-intervention to generate a canonical 
variable: RMSSD-betweenFC-varR, and performed 
the same linear regression as above with internal 
LOC-CognitionR, controlling for intervention effects. 
We found that, similarly to that in  SampleO, RMSSD-
betweenFC-varR had a significant association with 
LOC-CognitionR (β = 0.271, SE = 0.971, CI = [0.033, 

Fig. 3  Relationship between RMSSD canonical variables and 
participants’ belief in their own control of their own intel-
lectual abilities. A Linear regression analysis showed that 
RMSSD-betweenFC-varO was significantly related to internal 
LOC-Cognition in the original sample, when HRV data was 
collected during an ACT (auditory working memory) task. B 
Linear regression analysis showed that RMSSD-withinFC-varO 
was not significantly related to internal LOC-Cognition in the 
original sample, when HRV data was collected during an ACT 
(auditory working memory) task. C Linear regression analy-

sis on the replication sample, which was the post-intervention 
data of the original sample, controlling for intervention effects, 
identified the same significant association between RMSSD-
betweenFC-varR and internal LOC-Cognition. D Linear regres-
sion analysis in the validation sample, consisting both healthy 
older adults and individuals with aMCI (controlling for MoCA 
score), identified the same significant association between 
RMSSD-betweenFC-varV and internal LOC-Cognition, when 
HRV data was collected during an n-back (visual working 
memory) task
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2.630], p = 0.047), suggesting this relationship is reli-
able over a 1 month period (see Fig. 3C).

Validity

To additionally test the validity of RMSSD-
betweenFC-vecO, we used RMSSD data from another 
project collected while participants completed a simi-
lar working memory task while having HRV data 
collected, as well as completing the same measure of 
internal LOC-Cognition. The working memory task 
in the replication sample was a visual task, while the 
original sample used an auditory working memory 
task. We also used HRV data collected during the 
Stroop task (measuring inhibition), allowing us to 
assess the generalizability of RMSSD-betweenFC-
vecO. To control for the fact that this sample included 
both healthy older adults and individuals with aMCI, 
we also included MoCA score as a covariate in these 
regressions. We found that RMSSD-betweenFC-varV 
generated using visual working memory RMSSD data 
(β = 0.36, SE = 0.136, CI = [0.023, 0.574], p = 0.037, 
Fig. 3D), but not RMSSD-betweenFC-varV generated 
using Stroop task RMSSD data (β = 0.08, SE = 1.486, 
CI = [− 0.354, 0.657], p = 0.685), was significantly 
associated with LOC-CognitionV. This demonstrates 
the validity of our original finding, and suggests that 
RMSSD-betweenFC-vecO generalizes across working 
memory tasks using different sensory modalities, but 
not to RMSSD data collected during executive func-
tion tasks more broadly.

Discussion

Using CCA, we identified a canonical variable 
reflecting autonomic regulation, using both neural 
and peripheral physiological signals. The RMSSD 
canonical variable generated using CCA constrained 
by between-network FC (RMSSD-betweenFC-varO) 
was significantly associated with older adults’ belief 
that they were in control of their intellectual abili-
ties (internal LOC-Cognition). No similar relation-
ships were found using a similar RMSSD canonical 
variable that was constrained by within-network FC 
or when associating either canonical variable with 
external LOC-Cognition. A replication analysis sug-
gested that the RMSSD canonical vector generated 
by CCA with RMSSD and between-network FC data 

(RMSSD-betweenFC-vecO) could be used to gener-
ate a canonical variable (RMSSD-betweenFC-varR) 
that showed the same relationship using RMSSD data 
collected during the same auditory working memory 
task 6 weeks later. Validation of RMSSD-betweenFC-
vecO in a second dataset suggested that the relation-
ship between canonical variables generated using this 
vector and internal LOC-Cognition generalizes to 
RMSSD data collected during working memory tasks 
presented in a different format (visual stimuli), but 
not tasks measuring inhibition (Stroop task). Overall, 
these findings suggest that this marker of autonomic 
regulation relates to internal LOC-Cognition in older 
adults at risk for dementia and may provide a poten-
tial means of intervening in internal LOC-Cognition 
to improve resilience and adherence to interventions 
in this at-risk population. Previous studies have gen-
erally focused on identifying autonomic markers that 
may be important in dementia using mean HRV (F. 
[17] or specific dynamic patterns of HRV (Q. [5]. 
By using a data-driven approach that maximized 
the association between HRV time series and brain 
networks, we hoped to find a marker of adaptation 
capacity that reflects integrated peripheral and neural 
signals underlying autonomic regulation and is sensi-
tive to processes seen in brain aging. Replicating and 
validating the relationship between this marker and 
a behavioral trait reflecting resilience provide con-
fidence that this approach has identified a meaning-
ful marker of adaptation capacity that may implicate 
future therapeutics development for slowing/prevent-
ing dementia. Particularly, interventions aimed at 
modifying adaptation capacity may benefit from the 
ability to use this marker as a validated measure to 
assess whether autonomic regulation is being adjusted 
in a meaningful way. One example is research that 
aims to modulate adaptation capacity during cog-
nitive training (F. V. [18] to put participants in the 
optimal state to show broad cognitive improvements 
that may rely on autonomic regulation during training 
(Quanjing [5].

These findings have several additional implica-
tions. Firstly, the finding of constraining the HRV 
data using between-network, but not within-network, 
FC suggests that identifying specific neural signals 
reflecting autonomic function is a critical aspect of 
understanding adaptation capacity and how it relates 
to internal LOC-Cognition. CCA weights were char-
acterized by high influence from connections between 
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the somatomotor network and visual, frontoparietal, 
and dorsal attention networks, as well as by connec-
tions between the dorsal attention and default mode 
network. Previous work has often highlighted cin-
gulate, insular, and subcortical regions as critical 
elements of the central regulation of ANS [37]. Our 
results suggest that connections between sensory 
regions may have been overlooked, in line with recent 
work highlighting the hierarchical involvement of the 
whole brain in processing ANS signals [38]. Tight 
coupling between autonomic and sensorimotor func-
tions is a critical aspect of adaptive behavior, and our 
results add to the literature suggesting a critical rela-
tionship between sensorimotor brain regions and the 
ANS [23, 35]. This is particularly important in indi-
viduals at risk for dementia because sensory regions 
are affected later by dementia pathology [2, 3] and 
may therefore be more easily modifiable by inter-
ventions aimed at causing brain plasticity to slow or 
prevent cognitive decline. Additionally, the involve-
ment of connections between the dorsal attention and 
default mode networks is also of note. These connec-
tions are known to be critical for dynamic changes 
between internal and external states [41] and are also 
known to change during aging and dementia [9]. Our 
findings suggest that these task-related dynamics may 
also relate to autonomic regulation. The findings that 
between-network connections were more functionally 
relevant are also in line with findings showing that 
these connections are essential for explaining individ-
ual differences in behavior (van den [42]. Why these 
connections are more strongly related to the patterns 
of autonomic regulation seen in the working memory 
HRV data is a question for future research,however, 
the neurovisceral integration model [38] suggests 
that communication between different levels of neu-
ral hierarchies (at which these different networks 
exist: Margulies et  al. [24] is critical for autonomic 
regulation, allowing for both bottom-up and top-down 
communication between brain and peripheral signals. 
These between-network connections may be more 
involved in this type of hierarchical integration of sig-
nals during autonomic regulation.

The finding that these results generalize across 
working memory tasks is also particularly interesting. 
We used a sliding window approach to generate time 
series of HRV data in response to cognitive stress to 
build on previous work suggesting that these condi-
tions are essential for identifying signals reflecting 

adaptation capacity [5]. The results further support 
this approach and suggest that HRV responses at spe-
cific time points to cognitive stress seem to be par-
ticularly important for identifying markers of adapta-
tion capacity that relate to resilience. Our findings go 
further to suggest that markers of adaptation capac-
ity identified using different cognitive stressors may 
reflect measures of resilience to different extents. 
The results of this study do not imply that autonomic 
responses during, for example, the Stroop task do 
not contain important information about adapta-
tion capacity and resilience. However, they do sug-
gest that markers of adaptation capacity developed 
during specific cognitive stressors contain unique 
information and cannot necessarily be assumed to 
produce the same autonomic responses: the canoni-
cal vector generated during working memory could 
not be applied to HRV data during the Stroop task to 
produce a canonical variable that similarly reflected 
internal LOC-Cognition. It is less clear from this 
study exactly what this unique information is, except 
that it occurs more at specific time points and that the 
specific temporal pattern is unique to working mem-
ory tasks. Given that the important time points are 
relatively early on (5 and 6) and late into task perfor-
mance (12–15) and appear to occur in runs, they may 
reflect a person encountering a challenge in the task 
and adapting to it or a response to increased boredom/
fatigue. We do not know from these findings whether 
these responses do not occur in the Stroop task, if 
they occur differently, or at different time points, 
given we are validating a specific biomarker devel-
oped in the working memory task and did not conduct 
an exploratory CCA in the Stroop task. However, it is 
interesting that they do appear to occur in the same 
timeframe in a different working memory task, sug-
gesting they may reflect a general response to this 
type of task. It is also unknown if this pattern appears 
at rest or during recovery, but given the lack of gener-
alization to the Stroop task and the specific temporal 
nature of the response, we believe it seems unlikely.

An important question we are unable to answer 
in this study is the extent to which the state of par-
ticipants during fMRI data collection would alter this 
biomarker. Although participants were cognitively 
challenged during HRV data collection, they were at 
rest for fMRI data collection. Resting-state data is the 
most commonly used fMRI modality when assess-
ing trait relationships with behavior, as we have done 
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in this study. Some research suggests that trait FC is 
robust to task-related changes, reflecting a “finger-
print” [11] of the person that changes little during 
tasks [13] and is governed by similar principles to 
task-related activity [26]. Alternatively, some studies 
suggest that FC measures obtained from task-based 
data may be better able to predict behavioral traits 
[10], suggesting important changes in response to task 
demands. Answering this question is also not straight-
forward methodologically,there is disagreement in the 
field over how to generate FC from task-based data: 
should task-related signals be regressed out to gen-
erate true baseline FC (e.g., Gratton et al. [13] or do 
task-related changes reflect traits in a similar way to 
how we have conceptualized HRV responses to cog-
nitive demands in this study? Should you analyze 
task-related changes specifically using a Psychophysi-
ological Interaction (PPI) analysis [30] or collapse 
across the entire time series to generate FC data [12]? 
Although beyond the scope of the current study, these 
are important questions for future research,given that 
the state of participants during HRV data collection is 
critical for the identification of this biomarker, it may 
also be true that the state of participants during fMRI 
data collection is equally important. However, it is 
important to note that using resting-state fMRI data 
to constrain the CCA produced significant findings, 
suggesting this specific biomarker has value, whether 
or not it can be improved upon by using task-based 
fMRI data.

There are some limitations associated with 
this study. To create a common correlated space 
between the functional networks (Y) and HRV (X), 
we use CCA. CCA builds a simple linear model in X 
space and one in Y space to create a joint correlated 
space. The linear models generate positive and neg-
ative weights. For interpretability, we only focused 
on the magnitude of the weights when attempting 
to understand which connections were contribut-
ing most strongly to the canonical vector. We have 
avoided interpreting the direction due to some of the 
controversies over how to explain negative FC and 
its physiological meaning [4]. Future studies may 
choose to use non-negative CCA [36]; instead, how-
ever, we chose to use regular CCA to try and maxi-
mize the correlation between HRV and FC data. 
In addition, for simplicity, we only used RMSSD 
measures from the HRV time series and Yeo and 
Krienen’s [46] cortical networks for resting-state 

FC. More advanced data-driven extraction of whole 
brain (including subcortical regions) FC and raw 
HRV signals (using time series signal processing 
or a more advanced deep learning approach) could 
potentially reveal additional shared signals reflect-
ing adaptation capacity. Additionally, although we 
aimed to replicate and validate our findings, all 
samples used were relatively small and demographi-
cally homogenous. Larger samples will be needed 
to understand the true generalizability and effect 
sizes related to the RMSSD-betweenFC-vecO bio-
marker. In general, our sample size is on the smaller 
side for CCA analyses, although critically we 
reduced the dimensions of the brain and HRV data 
prior to CCA to ensure the number of variables did 
not exceed the number of samples [27]. Importantly, 
we replicated and validated our results in an inde-
pendent sample, suggesting that the sample size was 
sufficient to identify meaningful signal in the data. 
It is a challenge to collect large datasets in this criti-
cal at-risk population, particularly due to the noisy 
HRV data seen in older adults at risk for dementia 
that often leads to considerable data loss (as seen in 
our study). CCA in small samples can lead to noisy 
estimates, which is why it is particularly important 
in these studies to validate using out-of-sample 
predictions, as in this study. Finally, all our analy-
ses were cross-sectional in nature. To understand 
whether there are any causal relationships between 
internal LOC-Cognition and RMSSD-betweenFC-
vecO, future studies will need to use designs with an 
experimental manipulation or longitudinal data as 
individuals progress into dementia and potentially 
shift to a more external LOC-Cognition. These 
studies will be essential if RMSSD-betweenFC-
vecO is to help identify any means of intervening to 
improve/maintain internal LOC-Cognition in older 
adults at risk for dementia.
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