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a b s t r a c t 

Effective cognitive training must improve cognition beyond the trained domain (show a transfer effect) and be 

applicable to dementia-risk populations, e.g., amnesic mild cognitive impairment (aMCI). Theories suggest train- 

ing should target processes that 1) show robust engagement, 2) are domain-general, and 3) reflect long-lasting 

changes in brain organization. Brain regions that connect to many different networks (i.e., show high participa- 

tion coefficient; PC) are known to support integration. This capacity is 1) relatively preserved in aMCI, 2) required 

across a wide range of cognitive domains, and 3) trait-like. In 49 individuals with aMCI that completed a 6-week 

visual speed of processing training (VSOP) and 28 active controls, enhancement in PC was significantly more 

related to transfer to working memory at global and network levels in VSOP compared to controls, particularly 

in networks with many high-PC nodes. This suggests that enhancing brain integration may provide a target for 

developing effective cognitive training. 
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Cognitive training is seeing growing use in populations with diverse

ognitive abilities ( Hill et al., 2017 ; Lampit et al., 2014 ; Tang et al.,

019 ). Improvements in the trained domain have been demonstrated

obustly in older adults for whom the aim is to prevent or slow cognitive

ecline, especially in the context of dementia ( Gates et al., 2019 ). How-

ver, for cognitive training to be maximally clinically useful, it needs

o result in benefits to cognition more broadly beyond the trained do-

ain: i.e., to show a transfer effect, and to be feasible in individuals at

igher risk for dementia who may already be showing signs of cognitive

ecline. It has been proposed that transfer relies on the training of pro-

esses that are common across trained and untrained domains resulting

n changes in brain architecture that go beyond purely task activation

atterns ( Lovden et al., 2011 ). However, empirical findings suggest that

hese common processes need to show robust engagement, which is of-

en absent in older adults and those at-risk for dementia ( Dahlin et al.,

008 ), to result in transfer. Taken together, these findings suggest that,

o have maximum clinical utility, cognitive training programs should

arget neural processes that 1) show robust engagement in those at-risk

or dementia, 2) are domain-general across a range of cognitive pro-
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esses, 3) reflect sustained changes in brain architecture. Identifying

eural processes that meet these criteria is a key step in understand-

ng how best to develop training programs that will cause transfer in

ndividuals at-risk for dementia. 

A key at-risk group is older adults with amnestic mild cognitive im-

airment (aMCI), who have a significantly elevated risk of progression

o Alzheimer’s disease (AD) ( Sperling et al., 2011 ), show signs of impair-

ent predominantly in memory-related processes ( Hirni et al., 2013 ),

nd demonstrate pathology in memory-related regions ( Braak et al.,

000 ; Palmqvist et al., 2017 ; Vogel et al., 2020 ). Studies have shown

ignificant differences in how older adults with aMCI engage cognitive

rocesses ( Li et al., 2015 ), with important implications for cognitive

raining. Regions engaged during visual attention (i.e., those in visual

nd attention networks) appear to be the least functionally different in

MCI, suggesting they may represent a potential target for effective cog-

itive training. Tasks that rely on Processing Speed and Attention (PS/A)

re known to activate these regions, suggesting they meet the first cri-

eria for effective cognitive training in aMCI. However, while training

sing these tasks has been shown to improve trained domains in individ-

als with aMCI, there is limited evidence of transfer to memory-related

omains ( Miotto et al., 2018 ; Rosen et al., 2011 ). Directly analyzing
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ustained, domain-general brain mechanisms responsible for transfer in

pecific individuals following training using these tasks may provide a

eans of determining how to enhance transfer effects in the population

s a whole. 

Recently there has been a shift towards understanding neural func-

ion in terms of brain topology rather than analyzing specific regions in

solation. Research has shown that an individual’s brain topology shows

rait-like properties (i.e., is reliable over time and individual-specific)

 Finn et al., 2015 ; Gratton et al., 2018 ), and relates robustly to their

ognitive traits, including in older adults at various stages of cognitive

ecline ( Avery et al., 2020 ). Brain topology therefore reflects a key tar-

et for the identification of long-lasting brain mechanisms that can be

xploited to improve transfer effects of cognitive training in individu-

ls with aMCI. One potential mechanism involves the capacity of the

erebral cortex for integrating information across a range of cognitive

rocesses via connections that link functionally specialized networks.

ecent research suggests this capacity can be understood by studying

articipation Coefficient (PC; how divese a brain region’s connections

re to different functionally specialized networks) and that cortical net-

orks containing many high PC nodes are particularly important for

upporting the integration of information ( Bertolero et al., 2017 ). Corti-

al networks that include many high PC nodes could facilitate effective

ransfer of training using PS/A tasks because 1) these networks are ro-

ustly activated by PS/A tasks in aMCI ( Li et al., 2015 ), 2) high PC nodes

n these networks are critical for a wide range of cognitive processes

 Warren et al., 2014 ), and 3) PC reflects a property of brain architec-

ure with relatively high test-retest reliability, suggesting changes may

ersist over time ( Du et al., 2015 ). Importantly, preliminary research

uggests that training using PS/A tasks causes an increase in functional

onnectivity between regions within these networks ( Ross et al., 2019 )

n healthy older adults, suggesting the potential for improving PC in

hese regions via tasks involving PS/A. 

Using a randomized controlled trial design, we examined the un-

erlying brain mechanisms of transfer effects by looking at cortical

etwork-level PC in participants with aMCI that completed a 6-week

SOP (vision-based speed of processing) cognitive training that is vision-

riven PS/A-oriented, in comparison to an active control group engaging

n computerized mental leisure activities (MLA) of Sudoku, cross-word

uzzles, and solitaire. We collected behavioral data on trained (Useful

ield-of-View; UFOV) and transferred cognitive domains (working mem-

ry and episodic memory), as well as brain imaging data on resting-state

nd a PS/A task related fMRI immedilatey before and after 6-week in-

ervention. We hypothesized that transfer to untrained domains in older

dults with aMCI would relate to increased network PC in specific net-

orks including large numbers of high PC nodes that are robustly acti-

ated by VSOP training. By assessing the interaction of group-by-neural

hange, we wanted to assess whether enhanced network PC in the inter-

ention group specifically was related to increased transfer effects. We

xpected to see the effects of network PC particularly in networks with

igh PC nodes that are activated by VSOP training, such as ventral and

orsal attention, and frontoparietal networks ( Bertolero et al., 2017 ).

e also tested whether changes of network PC mediated the relation-

hip between trained and untrained domains. 

esults 

By capitalizing on a vision-driven PS/A-oriented 6-week intervention

n 84 older adults with aMCI and applying whole-brain graph theoreti-

al methods to functional connectivity data acquired using resting state

MRI, we examined the underlying neural mechanisms of transfer effects

nduced by cognitive training. We randomly assigned participants into

SOP intervention and MLA control groups at a 2:1 ratio. Sample char-

cteristics are in Table 1 . There were no significant group differences

n baseline characteristics. To study the intervention effect, we only in-

luded participants who had both baseline assessment and assessment

mmediately after the intervention period (VSOP: n = 49; MLA: n = 28).
2 
or each individual the T1 image was parcellated into 3661 network

odes using FreeSurfer and the SBCI pipeline ( Cole et al., 2021 ) and then

 3661 by 3661 functional connectivity matrix was generated for base-

ine and post-intervention respectively. Fig. 1 A left shows an example

f the mean functional connectivity matrix for the whole group at base-

ine. We assigned each node to one of the seven large-scale functional

etworks defined by Yeo et al. (2011) ( Fig. 1 A right). To assess the spar-

ity of the functional networks, we calculated the density as the ratio of

he number of positive fc edges with respect to the maximum possible

dges for each participant at baseline. Then we averaged density across

ll participants to obtain the group mean density. The group mean den-

ity is 49% for the whole brain, 42% - 62% for between-networks, and

3% - 80% for within-networks ( Supplemental Figure 1 ). Using these

re-defined networks, we calculated PC: nodes with functional connec-

ivity to only nodes from their own network have a PC of 0, while nodes

ith many distributed between-network connections would have a PC

loser to 1. We measured network PC by calculating mean PC across

ll nodes within a network and similarly averaged across all nodes for

lobal analyses (see Fig. 1 B for a schematic depiction) . We hypothe-

ized that transfer effects would relate to increased PC across large-scale

rain networks after training, particularly in networks with more high-

C nodes (e.g., network C in Fig. 1 B ). 

raining effect on trained and untrained cognitive domains 

To test whether VSOP training resulted in improvements in trained

UFOV) and untrained domains (working memory and episodic mem-

ry), we calculated the group difference in reliable improvements,

here a participant was classified as having improved reliably if their

erformance at a follow-up occasion exceeded baseline performance by

 SEM of baseline data (cf., ACTIVE trial ( Ball et al., 2002 )) ( Fig. 2 ,

ee Method section for details ). Significant between-group differences

hat were higher in the VSOP group relative to MLA included: UFOV

rom baseline to post-test ( g = 0.51, 𝜒2 = 7.07, p = 0.008), working mem-

ry from baseline to post-test ( g = 0.22, 𝜒2 = 3.93, p = 0.048). These

esults suggest that VSOP training leads to improvements in working

emory. There was no significant effect of VSOP training on episodic

emory. 

aseline measure of task activation and PC 

To confirm that PS/A tasks similar to those used in our cognitive

raining program robustly activate regions in networks that include

igh-PC nodes in aMCI, we measured brain activity during a visual at-

ention task across both groups at baseline and calculated percentages

f significant voxels within each of the 7 Yeo networks ( Fig. 3 A ). In ad-

ition to unimodal sensory networks (visual and sensorimotor), results

howed that the visual attention task activated regions in higher-order

orsal attention (DAN), frontoparietal control, and ventral attention net-

orks (VAN) including important high-PC nodes ( Bertolero et al., 2017 )

uch as the insula (VAN), dorsal anterior cingulate cortex (VAN), dor-

olateral pre-frontal cortex (FPCN), and superior parietal cortex (DAN)

 Fig. 3 A ). This suggests that performance on this task robustly engages

igh-PC networks in aMCI, in line with studies suggesting they are rela-

ively preserved in these individuals ( Li et al., 2015 ). Previously studies

uggest that while diverse club connectivity is relatively spared in aMCI,

ertain topological properties of these regions may show differences to

ealthy older adults ( Xue et al., 2020 ). To assess the spatial pattern of

igh-PC nodes in individuals with aMCI, we plotted the top 20% nodal

C (high-PC nodes, Bertolero et al. (2017) ) across both groups at base-

ine ( Fig. 3 B ). In line with studies in younger adults, we found highest

umbers of high-PC nodes in the limbic, frontoparietal, and both at-

ention networks, and lowest in the visual and default mode networks,

uggesting preservation of PC distribution in aMCI ( Bertolero et al.,

017 ), and confirming the importance of the frontoparietal and atten-

ion networks that are robustly activated by visual attention tasks in
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Fig. 1. A. For each participant, we generated a functional connectivity matrix based on 3661 cortical nodes with Freesurfer recon-all parcellation for baseline and 

post-intervention respectively. Then each node was assigned to one of the seven large-scale functional networks defined by Yeo et al. (2011) . Left is an example of 

mean functional connectivity matrix for the whole group at baseline. Right shows the networks defined by Yeo. B. Schematic overview of network-level Participation 

Coefficient (PC) analysis. We first calculated PC for each node, which reflects how strongly a node within a given network is connected to other networks. Then 

we calculated network-level PC by averaging PC across nodes within each network, which quantifies the extent to which a network connects to other networks. We 

expected that transfer effects would relate to increased PC across large-scale brain networks after training, particularly in networks with more high PC nodes (e.g., 

network C). 

3 



Q. Chen, A. Turnbull, M. Cole et al. NeuroImage 254 (2022) 119124 

Table 1 

Baseline characteristics. 

Total ( N = 84) VSOP group ( n = 56) MLA group ( n = 28) t or 𝜒2 , df (p) 

Age, mean (SD) 74.71 (7.30) 75.23 (7.49) 73.68 (6.92) 0.92, 82 (0.36) 

Years of education, mean (SD) 16.34 (2.55) 16.17 (2.39) 16.68 (2.87) − 0.86, 82 (0.39) 
Male, n (%) 45 (53.6) 32 (57.1) 13 (46.4) 0.86, 1 (0.35) 

Non-Hispanic White, n (%) 74 (88.1) 52 (92.9) 22 (78.6) 3.63, 1 (0.06) 

Married, n (%) 62 (73.8) 42 (75.0) 20 (71.4) 0.12, 1 (0.73) 

MOCA, mean (SD) 24.05 (2.62) 23.89 (2.75) 24.36 (2.33) − 0.77, 82 (0.45) 
GDS, mean (SD) 2.04 (2.23) 2.18 (2.15) 1.75 (2.40) 0.83, 82 (0.41) 

Single-domain aMCI, n (%) 37 (44) 22 (39.3) 15 (53.6) 1.55, 1 (0.21) 

First-degree family history of Alzheimer’s dementia, n (%) 43 (51.2) 28 (50.0) 15 (53.6) 0.10, 1 (0.76) 

ADSCT in mm 

3 , mean (SD) 2.77 (0.16) 2.75 (0.17) 2.81 (0.14) − 1.84, 82 (0.07) 
Taking AD medication, n (%) 11 (13.1) 8 (14.3) 3 (10.7) 0.21, 1 (0.65) 

BMI, mean (SD) 26.67 (4.64) 26.57 (4.75) 26.86 (4.50) − 0.27, 82 (0.79) 
Chronic condition index, mean (SD) 4.46 (2.21) 4.38 (2.15) 4.64 (2.34) − 0.52, 82 (0.60) 
• Hypertension, n (%) 45 (54.2) 27 (49.1) 18 (64.3) 1.73, 1 (0.19) 

• Diabetes, n (%) 10 (11.9) 9 (16.1) 1 (3.6) 2.78, 1 (0.10) 

NOTE: AD = Alzheimer’s disease; ADSCT = Alzheimer’s disease signature cortical thickness (for neurodegeneration); aMCI = amnestic mild 
cognitive impairment; BMI = body mass index; GDS = Geriatric Depression Scale – 15 items; MOCA = Montreal Cognitive Assessment (for 
global cognition). 

Fig. 2. Effects of VSOP training on trained and untrained domains. Percent 

of participants showing reliable improvement for trained (i.e., UFOV) and un- 

trained (i.e., working memory and episodic memory) domains for VSOP (red) 

and MLA (blue). ∗ represents significant between-group difference in% with re- 

liable improvement ( p < 0.05). 
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ur sample for integration across multiple networks. To assess the ex-

ent to which PS/A tasks similar to those used during training activated

igh-PC nodes defined using our sample, we calculated the percentage

f high-PC nodes that were significantly active during the PS/A task,

nd found that 51% of these nodes were significantly active. This sug-

ests that these tasks are relatively well-suited to engage these nodes,

lthough future research may be needed to identify ways of improv-

ng these tasks so that they activate a greater proportion of high-PC

odes. 

elationship of brain PC with VSOP-induced trained and transferred effects 

To test our hypothesis that increased PC related to greater improve-

ent in the untrained working memory domain in the intervention

roup (i.e., VSOP) compared to the control group (i.e., MLA), we con-

ucted GLM models (Change of Cognition = 𝛽0 + 𝛽1 Group + 𝛽2 Change

f PC + 𝛽4 Change of PC × Group + ԑ) at global and network levels. We

xpected to see significant interaction effects for Change of PC × Group .
For the trained domain, relative to MLA, greater improvement in

FOV was weakly associated with greater increases in global PC score

ollowing VSOP training ( B = 7.80, SE = 4.08, Wald’s 𝜒2 = 3.66,

 = 0.056). When examining the effect related to network PC scores,

he somatomotor network ( B = 9.91, SE = 3.09, Wald’s 𝜒2 = 10.32,

aw p = 0.001, FDR-adjusted p = 0.007), ventral attention ( B = 15.51,

E = 5.19, Wald’s 𝜒2 = 8.95, raw p = 0.003, FDR-adjusted p = 0.015) and

rontoparietal ( B = 12.28, SE = 5.12, Wald’s 𝜒2 = 5.77, raw p = 0.016,

DR-adjusted p = 0.037) networks shows significant relationships to

rained-domain improvements after FDR correction ( Fig. 4 A ). To addi-
4 
ionally ensure these results were not driven by changes in head motion

hat are known to affect resting state FC-associated measures, we con-

ucted paired t-tests and found no significant change in any of the six

ead motion parameters in either the whole sample or training group.

e also included participant change in the six head motion parame-

ers from pre- to post-training as covariates in these analyses. Including

otion did not alter these results, with the same networks surviving

DR-correction, although the relationship between change in global PC

nd UFOV improvements was significant after including head motion

arameters ( B = 8.83, SE = 4.13, Wald’s 𝜒2 = 4.56, p = 0.033). 

In line with our hypothesis that increased PC relates to greater trans-

er effects of cognitive intervention, compared to MLA, greater im-

rovement in working memory was associated with enhanced global

C score following VSOP training ( B = 17.91, SE = 5.07, Wald’s
2 = 7.71, p = 0.020). When examining the effect related to network

C scores, the strongest effect was observed in the ventral attention net-

ork ( B = 30.88, SE = 8.05, Wald’s 𝜒2 = 9.70, raw p = 0.002, FDR-

djusted p = 0.014), with dorsal attention ( B = 21.87, SE = 9.61, Wald’s
2 = 5.17, raw p = 0.023, FDR-adjusted p = 0.049), frontoparietal

 B = 23.27, SE = 9.71, Wald’s 𝜒2 = 5.74, raw p = 0.017, FDR-adjusted

 = 0.049), and limbic ( B = 24.17, SE = 11.00, Wald’s 𝜒2 = 4.84, raw

 = 0.028, FDR-adjusted p = 0.049) networks being significant after FDR

orrection as well ( Fig. 4 B ). With change of head motion parameters

s covariates, the ventral attention network was still the most strongly

elated to improvements in working memory ( B = 31.17, SE = 9.73,

ald’s 𝜒2 = 10.26, raw p = 0.001, FDR-adjusted p = 0.007), how-

ver, the dorsal attention ( B = 21.64, SE = 9.92, Wald’s 𝜒2 = 4.75, raw

 = 0.029, FDR-adjusted p = 0.068), frontoparietal ( B = 22.39, SE = 9.55,

ald’s 𝜒2 = 5.49, raw p = 0.019, FDR-adjusted p = 0.067), and limbic

 B = 21.28, SE = 10.91, Wald’s 𝜒2 = 3.81, raw p = 0.051, FDR-adjusted

 = 0.089) networks no longer passed FDR-correction. Given the rela-

ively marginal p-values in these relationships and the change following

he addition of motion covariates, we suggest particular caution should

e used when interpreting these findings outside of the ventral attention

etwork. 

There were no significant effects of increased PC following VSOP

raining on episodic memory. 

ain effect of training on PC 

To test whether VSOP training resulted in enhancement in PC in

eneral across participants, we performed between-group analyses with

 GEE model ( PC = 𝛽0 + 𝛽1 Visit + 𝛽2 Group + 𝛽3 Visit × Group + ԑ)

 Fig. 5 ). We didn’t find any significant interaction of Visit × Group on

C scores at global or network levels. This suggests that while individ-
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Fig. 3. A. Task activation for the whole group at baseline. For the visual attention task fMRI, we computed the group-level BOLD contrast map showing stronger 

activity for task stimuli compared with fixation periods, FDR corrected p < 0.05. B. Top 20% of PC for the whole group at baseline. The pie charts were divided into 

different segments showing percentages of voxels or nodes within each network. 
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i  
als that showed increased PC at global and network levels following

raining were significantly more likely to demonstrate a transfer effect,

n general the training task did not lead to an increase in PC at either

lobal or network levels. 

C of ventral attention network mediates transfer effect in VSOP group 

We didn’t find significant total effect (c) between UFOV and working

emory ( p = 0.816). Despite this insignificant total effect, mediation

nalyses revealed a significant indirect effect of ventral attention net-

ork PC ( p < 0.05 based on 5000 bootstraps, 95%CI [0.0104, 0.6091],

ig. 6 ), suggesting that increase in PC score of ventral attention network

ediated transfer from the trained domain (i.e., UFOV) to the untrained

omain (i.e., working memory). No significant mediation effects were

ound for global PC or other networks. 

Additionally, we tested whether neurodegeneration indexed by AD-

CT (Cortical thickness signature for Alzheimer’s disease-associated

eurodegeneration) affects PC. We didn’t find a significant effect of AD-

CT on PC at global or network levels (all ps > 0.05). When controlling

or ADSCT, the relationship of PC with VSOP-induced trained and trans-

erred effects remained the same. 

iscussion 

We demonstrated that increases in the PC of human cortical net-

orks following VSOP training predicted improvement in an untrained

orking memory domain. This result was robust across global and net-

ork levels, with strongest effects observed in the ventral attention net-

ork. Critically, PC of the ventral attention network mediated trans-

er from the trained domain (i.e., UFOV) to the untrained domain (i.e.,

orking memory). By using surface-based preprocessing and a novel

ipeline ( Cole et al., 2021 ) that projects the functional connectivity

atrix to the white surface, we were able to capture the spatial fea-

ures of the brain more accurately than using volumetric approaches
5 
 Brodoehl et al., 2020 ; Coalson et al., 2018 ), preserving spatial preci-

ion in our calculation of graphs that were used to calculate PC. This

tlas-free approach provided us with 3661 × 3661 matrices for graph

heory analysis, without the need to choose a fine-grained parcellation

cheme, which can affect the topological properties of brain networks

 Lord et al., 2016 ). To better interpret our final results and allow compa-

ability with previous literature, nodal level PC that benefited from this

mproved precision and atlas-free approach was then averaged within

arge-scale networks that are widely used in the literature ( Yeo et al.,

011 ). 

These findings improve our understanding of cortical network re-

onfiguration in response to cognitive training and how the capacity

or functional integration between networks contributes to successful

ransfer to complex cognitive abilities such as working memory. It has

een hypothesized that successful transfer effects may be restricted to

hose domains that share common processing components and neural

echanisms ( Jonides 2004 ; Lovden et al., 2011 ), and our results extend

his idea by considering the neural processes underlying the integration

f information between brain networks. While the trained (i.e., UFOV)

nd untrained (i.e., working memory) domains do share overlapping

ognitive component processes, including visual perception, attention,

nd executive control, our results also suggest that the capacity for in-

egrating information may represent a more subtle domain-general pro-

ess that can be exploited to improve transfer effects to cognition more

roadly. This is supported by the fact that the cortical networks that

howed improved PC included many high-PC, or “diverse club ”, regions

hat are known to be particularly critical for supporting the integrative

rocessing that supports complex cognition ( Bertolero et al., 2017 ) such

s working memory ( Cohen and D’Esposito, 2016 ). Additionally, the fact

hat these results were identified at rest may suggest that they are more

ikely to generalize to trait-level cognitive functioning that shows some

onsistency between the laboratoy and the real world ( Ho et al., 2020 ).

It is worth noting that VSOP training in our study did not lead to an

ncrease in PC overall. Previous research has shown that UFOV training
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Fig. 4. Relationship of global and network PC with VSOP-induced trained ( A ) and transferred ( B ) effects. The x-axis is the change of PC and the y-axis is the change 

of UFOV (trained effect) or working memory (transferred effect). Significant between-group difference was based on the interaction of change of PC × Group . To 

control the False Discovery Rate (FDR), p-values for the interaction effect were corrected across 7 networks using Benjamini–Hochberg (BH) procedure and both raw 

and FDR-adjusted p-values were reported. Pearson correlation analysis were conducted for VSOP (red) and MLA (blue) separately and raw p-values were reported. 
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an induce strengthened functional connectivity between brain regions

rom ventral attention (e.g., anterior insula), default mode (e.g., ante-

ior cingulate cortex), and frontoparietal (e.g., dorsolateral prefrontal

ortex) networks ( Ross et al., 2019 ) in healthy older adults in a manner

hat is consistent with increased PC. Additionally, in a previous study us-

ng the same sample of individuals as in our current study, we found that

he same intervention did lead to increases in within-network functional

onnectivity ( Lin et al., 2020 ), although between-network connectivity

as not considered. These results suggest that VSOP training can al-

er resting brain organization in aMCI and PS/A training can improve
6 
etween-network connectivity in healthy older adults. It may be that

mproving the capacity for integration via increasing between-network

onnections using these tasks is more challenging in individuals with

MCI, which would explain why we did not find a significant main ef-

ect in our study. This may also account for the fact that 51% of high-PC

odes were significantly activated by a similar PS/A task in our sample.

aving identified improved integration as a mechanism for inducing

ransfer effects from simple visual attention tasks to more complex cog-

itive functions, a key goal of future research will be to understand how

o develop tasks that target this neural mechanism in older adults, par-
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Fig. 5. Effects of VSOP training on global and network PC. We didn’t find any significant group-by-visit comparison of global or network PC. Error bars represent 

standard error of the mean. 

Fig. 6. Increased PC in ventral attention network mediates transfer from the 

trained domain (i.e., UFOV) to the untrained domain (i.e., working memory). 

Mediation results are shown as standardized regression coefficients. C: total ef- 

fect. C’: indirect effect. Significance of indirect effect was assessed using boot- 

strapped confidence intervals [0.0104–0.6091]. ∗ indicates p < 0.05. 
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icularly those with aMCI. One innovative approach may be to adapt

ovel optimization procedures that can analyze fMRI data in real-time

o modify task features to maximize a specific neural mechanism of in-

erest ( Lorenz et al., 2017 ). These approaches may be able to identify

SOP task features that are particularly able to activate networks known

o be important for integration across multiple networks, leading to an

ncrease in the ability of these task to activate a higher proportion of

igh-PC nodes/networks, or even to target features that increase the PC

f these networks more specifically. The capacity for integration in the

rain does appear to be modifiable in individuals at-risk for dementia

ia longer term pharmacological ( de Waal et al., 2014 ) and more in-

ensive cognitive training interventions ( Dimitriadis et al., 2016 ), sug-

esting it may be amenable to cognitive training developed specifically

or this purpose. These results also suggest that PC may be more eas-

ly influenced by non-VSOP training, and one important goal of future

esearch will be to understand how these findings generalize across dif-

erent types of cognitive training. 

One important theoretical question involves how our findings re-

ate to theories highlighting the importance of brain segregation, or

odularity, for cognitive functioning ( Cohen and D’Esposito, 2016 ). It

as been proposed that showing distinct functionally specialized neu-
7 
al modules is a pre-requisite for the capacity to benefit from cognitive

raining due to plasticity ( Gallen and D’Esposito 2019 ), and theories of

ging suggest that in healthy older adults a loss of the modular structure

f the brain may be responsible for cognitive aging ( Koen and Rugg,

019 ). Research has shown that the brain exists in a delicate balance

f integration and segregation ( Shine et al., 2018 ), neccesitated by the

eed to maximize the capacity for information transfer given limited bi-

logical resources to support wiring costs ( Bassett and Bullmore, 2006 ).

unctionally specialized modules are required for specific aspects of cog-

ition, including motor execution, while other tasks, particularly those

nvolving complex cognition requiring a range of different cognitive

rocesses simultaneously (e.g., working memory) rely on integration

 Cohen and D’Esposito, 2016 ). It may seem contradictory that training

elies on both segregation and integration, however, it is clear that ef-

ective functioning requires both capacities, and both capacities appear

o be at-risk from AD pathology, which can move the brain towards a

ore random network architecture without clear modules or the capac-

ty for effective integration between them ( Dai and He, 2014 ). Networks

ith high-PC nodes represent a key component of brain organization:

aving a relatively small number of nodes that are connected across

ll networks allows the brain to integrate information without compro-

ising it’s modular structure ( Bertolero et al., 2018 ; Bertolero et al.,

017 ). We propose that, while modularity is an essential characteristic

f brain topology, integration via these networks is equally important,

nd that targeting PC as a mechanism of transfer exploits their unique

ole within the connectome to facilitate improved complex cognition

ithout the risk of interfering with the inherent modular organization

f the brain that is required for more specialized cognition. Therefore,

hile we chose to analyze PC due to the importance of diverse connec-

ions for integration during complex cognition, we understand that the

onnectome is a complex balance of integration and segregation that can

e assessed using a range of graph theory metrics. The ability of the brain

o form functionally specialized modules has been proposed as a criti-

al biomarker for intervention-related plasticity, and networks/nodes

ith high PC have been shown to be critical for enabling brain mod-

larity by allowing information to move between dissociated modules

 Gallen and D’Esposito, 2019 ). Previous papers have also suggested that

n some individuals, improving segregation as measured using cluster-

ng coefficient is also important for understanding responses to cognitive
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raining ( Chen et al., 2021 ), further highlighting that both integration

nd segregation metrics are important for intervention-related plasticity

 Gallen and D’Esposito, 2019 ). While beyond the scope of this paper,

uture research is needed to clarify exactly how these different mea-

ures represent learning-dependent changes important for transfer, and

o what extent these mechanisms are universal or dependent on baseline

haracteristics of individual connectomes. 

There are several unanswered questions from our study: first, while

e did find transfer effects related to improvements in working mem-

ry, we did not find any significant transfer effect relating to episodic

emory. This may be explained by the fact that, relative to working

emory, simple episodic memory retrieval as measured Brief Visuospa-

ial Memory Test, does not place significant demands on cognitive con-

rol, which has been shown to modulate the need for neural integration

 Ray et al., 2020 ). It will be important to test whether episodic memory

erformance in tasks that require more cognitive control and neural in-

egration ( Rosen et al., 2011 ) is more amenable to transfer via improved

etwork integration. Alternatively, it may be that episodic memory im-

airments, which are more pronounced than working memory deficits

n individuals with aMCI, are more intransigent to cognitive training.

his would further increase the need to deploy cognitive training early

n in cognitive decline, and motivates specialized approaches aiming

o understand whether episodic memory can be improved by cognitive

raining in individuals with aMCI. 

Second, we did not include subcortical regions in our analysis. Sub-

ortical regions have been identified previously as important for transfer

n younger adults due to their involvement in a range of cognitive pro-

esses ( Dahlin et al., 2008 ). However, these regions also show damage

arly on in AD with significant consequences for functional connectiv-

ty ( Son et al., 2017 ). As our hypothesis required transfer processes to

e relatively preserved in aMCI, we chose not to include subcortical re-

ions in our hypothesis. Additionally, determining how to calculate PC

n subcortical regions is not straightforward. Many subcortical regions

how connections with regions in every cortical network due to their

oles in neuromodulation ( Shine, 2019 ), and therefore deciding which

unctional module they should be located in is difficult. PC is also known

o be affected by module size ( Pedersen et al., 2020 ), meaning that if

ubcortical regions are treated independently they are likely to have a

ighly inflated PC as they have far fewer within-module connections

han cortical networks. Alternatively, treating the subcortex as a single

odule carries its own conceptual issues, as this would require averag-

ng across a range of functionally discrete regions leaving results diffi-

ult to interpret. Having considered these conceptual and methodologi-

al issues, we decided it would be clearer to focus purely on the cortical

echanisms underlying transfer. This does not diminish the potential

ole of subcortical connections in transfer, however, it may be that these

egions are more important for modulating cortical integration than fa-

ilitating it directly ( Shine, 2019 ). Future research specifically target-

ng the role of subcortical regions in the integration of information will

e needed to further clarify these outstanding issues. Additionally, we

hose to use the networks defined by Yeo et al. (2011) for this analysis

ue to their wide use in the literature and reliability in a large sam-

le of individuals, allowing clearer comparison with the literature and

reater reliability than using data-driven modules in our smaller sam-

le. However, the use of these relatively large-scale networks limits the

patial specificity of our findings, meaning that it is unclear whether

ub-networks within these networks may be driving results. Future re-

earch is needed aimed at understanding exactly how PC within these

dentified high-PC networks is important for transfer following cognitive

raining. 

Finally, with enrollment starting in 2016, we followed 2011 NIH-AA

iagnostic criteria and did not collect pathological data related to AD,

s aMCI was considered a preclinical AD status. The revised 2018 NIH-

A research framework now recommends consideration of AD pathol-

gy; therefore, it is unclear whether VSOP training would be sensitive

o individuals with positive AD pathology, and future studies including
8 
easures of pathology are needed to better understand the specific role

f pathology in transfer effects. 

ethod 

thics statement 

The study was approved by the University of Rochester Research

ubject Review Board. Written informed consented was obtained from

ach participant. All methods were performed in accordance with rel-

vant guidelines and regulations. This study was registered with Clini-

altrials.gov on 24/09/2015 (NCT02559063). 

articipants 

Eighty-four subjects diagnosed with aMCI (single- or multiple-

omain) were recruited from University-affiliated memory, internal,

nd geriatric clinics. All clinics used 2011 diagnostic criteria for aMCI

 Albert et al., 2011 ). Other eligible criteria have been described earlier

 Lin et al., 2020 ). The study was approved by the University of Rochester

esearch Subject Review Board. All participants were sufficiently capa-

le of providing an informed consent to participate on their own. Writ-

en informed consent was obtained from all participants. No adverse

ffects were associated with either intervention. 

etting, randomization, and blindness 

All assessments and selective intervention sessions were conducted

n our research lab. Self-administered intervention sessions were con-

ucted at participants’ homes or neighborhood community centers. 

Intervention group assignment was designed using a 2:1 ratio in a 7-

lock randomization. Participants were notified by the interventionist

bout the intervention assignment (in a sealed envelope) only after all

aseline data were collected. Outcome assessors remained blinded to the

roup assignment. Participants were informed of the comparison of two

ew computerized interventions throughout data collection to avoid the

ossibility of an uneven placebo effect. Participants who completed the

LA intervention were provided with a compensatory VSOP training at

he end of the study. 

nterventions 

Interventions were described previously ( Lin et al., 2020 ). Briefly,

SOP training consisted of five tasks that emphasize PS/A, the task plat-

orm of which were provided by Posit Science (San Francisco, CA). All

asks share visual components that become increasingly more difficult

nd require faster reaction times as participants progress through the

raining. Participants responded either by identifying a specified target

bject or the location of the target on the screen. The training auto-

atically adjusted the difficulty of each task based on the participant’s

erformance, thereby ensuring that participants consistently performed

ear their optimal capacity. Existing literature suggests that 12 h of cu-

ulative VSOP training is sufficient to produce immediate as well as up

o 11 months benefit in PS/A among cognitively healthy older adults

 Ball et al., 2002 ; Wolinsky et al., 2013 ). 

MLA training consisted of an online word search, Sudoku, and Free-

ell, a variation of solitaire. Participants were allowed to play any com-

ination of these games to control for amount of computer use, and

imulate to everyday mental activities. 

Both interventions were conducted on online platforms specific to

ur study, with individual password-protected accounts. We provided

ll participants with an in-person training orientation and two in-

erson check-in sessions at our lab. All other training sessions were self-

dministered by the participants, with technical support available 7 days

 week. The intervention lasted for six weeks, consisting of up to four
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-hour sessions per week. Participants’ access to both intervention plat-

orms was removed on the date of their respective post-test assessments.

o significant interaction effect between group and dose of intervention

as found for changes in any variables. 

Seven participants from the VSOP group, but none from the MLA

roup, dropped out during the intervention period due to non-study re-

ated reasons. Marital status was the only factor that approached signifi-

ance in predicting dropout (57.1% of dropout subjects were unmarried

s. 23.4% among those that remained in the study, 𝜒2 = 3.79, p = 0.052).

ample size estimation 

Sample size calculations were performed using G ∗ power. Based on

arameter assumptions outlined in the protocol, the sample size ( N = 84)

rovided 80% power to detect an improvement at Cohen’s d = 0.40, us-

ng two groups at the 2:1 ratio, and 4 repeated measures up to 6 months

f follow-up with a 20% attrition rate. 

easures 

Cognitive measures . PS/A was measured using UFOV, a three-task

omputer test that assesses processing speed, sustained attention, and

ivided attention based on reaction time. A composite score with nat-

ral log transformation was used, with higher scores indicating f reac-

ion time and poorer performance ( Ball et al., 1988 ). We inverted this

core by multiplying it by − 1, so that higher scores indicated better

erformance. Working memory was measured using a composite score

erived from performance on dot-counting and dual-1-back tasks of EX-

MINER, a computerized test battery, developed by NINDS and UCSF

 Kramer et al., 2014 ). Episodic memory was measured using Brief Vi-

uospatial Memory Test delayed recall T-score ( Benedict et al., 1996 ).

cross time points, different versions of the measures were administered

o mitigate practice effects. 

Imaging data were collected at University of Rochester using a 3T

iemens TrioTim scanner (Erlangen, Germany) equipped with a 32-

hannel head coil. Structural MRI: Each session began with a local-

zer scan, followed by an MPRAGE scan (TR/TE = 2530 ms/3.44 ms,

I = 1100 ms, FA = 7, 256 × 256 matrix, 1mm 

3 isotropic resolution,

 mm slice thickness, 192 slices) to acquire high-resolution structural-

eighted anatomical images. BOLD fMRI data were collected using

 gradient echo-planar imaging sequence (TR/TE = 2500 ms/30 ms,

A = 90, 64 × 64 matrix, 4mm 

3 in-plane resolution, 4 mm slice thick-

ess, 37 axial slices). Participants underwent a 5-minute resting-state

can, during which they were instructed to relax with their eyes open,

ollowed by a 5-minute block-design “target among distractors ” visual

ttention task (see also ( Chen et al., 2020 ; Lin et al., 2020 )). The stimuli

ere presented in 5 blocks, each of which consisted of 6 trials, for a total

uration of 42 s; blocks were alternated with fixation periods of 20 s.

ithin each trial, a central fixation cross was presented for 500 ms, fol-

owed by 5500 ms presentation of the visual search pattern. An interval

f 1000 ms was inserted between trials. Participants were instructed to

earch for the target symbol, “� ” (present for 50% of trials) displayed

mong 6 distractors in different orientations (e.g., “� ”, “� ”.). Partic-

pants responded by pressing one of two response buttons to indicate

hether the target was present or absent. We used a visual attention

ask because of its differences in task presentation compared to those of

he VSOP training tasks while still containing a sustained attention com-

onent that is fundamental to performing VSOP tasks and for engaging

n MLA. 

Background information was collected at baseline. Cortical thick-

ess signature for Alzheimer’s disease-associated neurodegeneration

ADSCT) was calculated using structural MRI data, with ADSCT ≤

.77 mm 

3 indicative of neurodegenerative atrophy ( Jack et al., 2015 ;

in et al., 2017 ). Dose of intervention was automatically counted by

he VSOP and MLA training platforms. We also considered phenotype
9 
f MCI, single- vs. multi-domain, which was decided by their clinical di-

gnosis by the performance in executive function related battery tests.

he analysis revealed no significant interaction effects between group

nd MCI phenotype for changes in any variables. 

ata analysis 

maging data preprocessing 

Task fMRI data were analyzed with FEAT FSL Version 6.0.0

 www.fmrib.ox.ac.uk/fsl ). Preprocessing of the functional data in-

luded: slice scan time correction (sinc interpolation), motion correction

o the middle volume, smoothing with a nonlinear algorithm with 5 mm

ernel, and high-pass temporal filter with sigma=100 s. For each partic-
pant, functional data were registered to high-resolution brain-extracted

natomical images in native space. Then functional and anatomical vol-

mes were transformed into standardized MNI space. The general linear

odel (GLM) was used to fit beta estimates to the task events. The task

vents were convolved with a standard Double-Gamma hemodynamic

esponse function. The six motion parameters were added to models as

egressors. We assessed the task activation by the contrast of [task >

est]. The resulting statistical map was thresholded and corrected for

ultiple comparisons with FDR corrected p < 0.01. 

For resting state fMRI data, we applied a Surface-Based Connectiv-

ty Integration (SBCI) pipeline ( Cole et al., 2021 ). This surface-based

ipeline was designed to enable the comparison of structural and func-

ional connectivity, by projecting both signals to the white surface. T1

mages were parcellated using FreeSurfer 6.0.0 (http:// freesurfer.net/).

ortical surfaces were reconstructed using the recon_all tool available

n Freesurfer. As in a previous paper ( Cole et al., 2021 ), functional data

as minimally preprocessed prior to being entered into this pipeline.

icom images were converted to nifty format and the first 10 images

f each scan were dropped to allow for stabilization of MRI signals.

mages were then corrected for slice timing, and head motion using FSL

CFLIRT. Images were spatially smoothed in volume space with a Gaus-

ian kernel with full width at half-maximum (FWHM) of 5 mm. Images

ere temporally filtered with a band-pass filter (0.01–0.08 Hz). The

BCI pipeline ( https://github.com/sbci-brain/SBCI _ Pipeline ) was then

sed for further preprocessing using Freesurfer: motion correction, sam-

ling to the surface (left and right), and surface smoothing with a Gaus-

ian kernel with FWHM 5 mm. Nuisance covariates were regressed out,

ncluding the white matter signal, cerebrospinal fluid signal, six mo-

ion parameters (three translational and three rotational), and the global

ignal ( Murphy and Fox, 2017 ), generating partial timeseries that con-

rolled for these confounds. We mapped the volumetric BOLD signals to

he participant’s cortical surface, resulting in a BOLD time series at each

ertex on the surface meshes. The FC between any pair of vertices was

alculated by correlating the two partial BOLD time series that had been

ontrolled for confounding signals. This whole procedure generated a

661-by-3661 symmetric weighted functional connectivity matrix per

articipant at baseline and post-intervention respectively. 

etwork analysis 

Each cortical vertex is assigned to one of 7 functional networks cre-

ted by Yeo and colleagues ( Yeo et al., 2011 ). The 7 networks consist

f: visual, somatomotor, dorsal attention, ventral attention, limbic, fron-

oparietal and default mode networks ( Fig. 1 ). Fig. 1 left shows the av-

raged fc matrix across all participants at baseline. We investigated the

ntegration of brain networks at both the global and network levels. Fol-

owing previous studies ( Bertolero et al., 2017 ; Cohen and D’Esposito,

016 ), and due to the fact that the interpretation of negative edges in

C networks is not clear, negative functional connectivity was set to 0.

ith the GRETNA toolbox ( Wang et al., 2015 ), we calculated partici-

ation coefficient (PC) for each node, which measures how well a node

http://www.fmrib.ox.ac.uk/fsl
https://github.com/sbci-brain/SBCI_Pipeline
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ithin a given network is connected to other networks: 

 𝐶 𝑖 = 1 − 

𝑀 ∑
𝑚 =1 

( 

𝑘 𝑖,𝑚 

𝑘 𝑖 

) 2 

The term k i,m denotes the sum of node i’s edge weight within mod-

le m, and k i indicates the sum of node i’s edge weight in the entire

rain. Nodes that interact with only nodes from its own module would

ave a PC of 0, while nodes with many distributed between-network

onnections would have a PC closer to 1. To estimate global network

ntegration, we calculated the mean PC value across all nodes, which

eflects the extent of integration between networks in the entire brain.

o quantify the integration of specific modules, we calculated the mean

C value over nodes for each network, which reflects the extent to which

 network connects to other networks. 

tatistical analyses 

All statistical analyses were performed using SPSS version 24.0

IBM). 

Behavioral measures: For behavioral measures, we calculated the

roup difference in reliable improvements, where a participant was clas-

ified as having improved reliably on a particular measure if their per-

ormance at a follow-up occasion exceeded baseline performance on that

easure by 1 SEM of baseline data (cf., ACTIVE trial ( Ball et al., 2002 )).

 Chi-square test was conducted with p-value set at 0.05. The effect size

f training for each outcome was calculated using bias-corrected stan-

ardized mean difference (Hedge’s g): J ∗ (M_training - M_control)/intra-

ubject standard deviation, where J is the bias-correction factor [1 -

/(4 ∗ (total sample size-1) - 1)]ˆ( − 1). 

Relationships between behavioral and brain measures : To test our

ypothesis that higher functional integration of brain networks relates

o greater transfer effects of cognitive intervention, we used General-

zed Linear Model ( Change of Cognition = 𝛽0 + 𝛽1 Group + 𝛽2 Change of

C + 𝛽4 Change of PC × Group + ԑ) at global and network levels. Signif-

cant between-group difference was based on the interaction of Change

f PC × Group . Pearson’s correlation between changes of brain integra-
ion and behavioral variables were conducted for each group separately.

ne-tailed tests were used because our hypotheses were directional, ex-

ecting increased PC associated with greater transfer effects. 

Main effect of training on brain measures: Generalized Estimating

quation (GEE) model with AR(1) working matrix was used for between-

roup comparison with individual-level random effect considered: y =
0 + 𝛽1 Visit + 𝛽2 Group + 𝛽3 Visit × Group + ԑ. Visit was a later as-

essment (i.e. post-test) referred to baseline; Group was the VSOP group

eferred to MLA group; any significant between-group change was based

n the interaction of Visit × Group. 
Mediation analyses: In order to determine whether brain integra-

ion could mediate the relationship between the trained domain (i.e.,

FOV) and transfer domain (i.e., memory), we conducted mediation

nalyses with SPSS PROCESS Macro. Change of UFOV was the indepen-

ent variable, change of PC was the mediator, and change of memory

as the dependent variable. The PROCESS macro used bootstrapped

onfidence intervals to evaluate the significance of the indirect effect.

lthough traditional mediation analyses described by Baron and Kenny

 Baron and Kenny, 1986 ) require a total effect to be present, it has been

ecently argued that the total effect shouldn’t be a prerequisite for tests

f mediation ( Hayes, 2009 ; Shrout and Bolger, 2002 ). For example, in-

ependent and dependent variables (X and Y) are fully mediated by two

ediators, M1 and M2. The total effect is understood as the sum of the

irect effect and all indirect effects. The total effect could be zero when

he two indirect effects are comparable in magnitude but in opposite

irections. In our case, it’s likely that other unstudied mediators carry

he effect from trained domain through transferred domain in opposite

irections, producing a total effect closer to 0. 
10 
Multiple Comparisons Control: For network-level analysis, we

djust for multiple comparison across 7 networks with Benjamini–

ochberg (BH) procedure. 
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